設(shè)x1,x2+x(a,b∈R,a>0)的兩個(gè)極值點(diǎn),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)如果x1<2<x2<4,求f′(-2)的取值范圍;
(Ⅱ)如果0<x1<2,x2-x1=2,求證:;
(Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)時(shí),函數(shù)g(x)=-f′(x)+2(x2-x)的最大值為h(a),求h(a)的最小值.
【答案】分析:(Ⅰ)利用導(dǎo)數(shù)與函數(shù)極值的關(guān)系列出關(guān)于a,b的不等式組是解決本題的關(guān)鍵,利用整體思想確定出f′(-2)的取值范圍;
(Ⅱ)建立b與x1,x2的關(guān)系是解決本題的關(guān)鍵.根據(jù)所得的函數(shù)表達(dá)式利用函數(shù)的單調(diào)性求出b的取值范圍;
(Ⅲ)寫(xiě)出函數(shù)g(x)的表達(dá)式是解決本題的關(guān)鍵,根據(jù)基本不等式求出函數(shù)的最大值h(a),利用導(dǎo)數(shù)求該函數(shù)的最小值.
解答:解:(Ⅰ)對(duì)f(x)求導(dǎo)得f'(x)=ax2+(b-1)x+1,由題意x1,x2是方程f'(x)=0的兩根.
由x1<2<x2<4,且a>0得
f'(-2)=4a-2(b-1)+1=4a-2b+3,由(1)(2)所表示的平面區(qū)域可求得4a-2b>0,
故f'(-2)=4a-2b+3>3.
所以f'(-2)的取值范圍是(3,+∞).
(Ⅱ)方程ax2+(b-1)x+1=0的兩根為x1,x2,由根與系數(shù)的關(guān)系得
由于x1x2≠0,兩式相除得-(b-1)=,即b=-+1.
由條件x2=x1+2可得b=ϕ(x1)=-+1,易知當(dāng)x1∈(0,2)時(shí),φ(x)是增函數(shù),
當(dāng)x1∈(0,2)時(shí),ϕ(x1)<ϕ(2)=,
故b的取值范圍是.得證.
(Ⅲ)因?yàn)閒'(x)=0的兩根是x1,x2
故可設(shè)f'(x)=a(x-x1)(x-x2),
所以g(x)=-f'(x)+2(x2-x)=-a(x-x1)(x-x2)+2(x2-x)=a(x2-x)
由于x∈(x1,x2),
因此x2-x>0,x-x1>0,
又a≥2,可知x-x1+>0,
+2,
當(dāng)且僅當(dāng)x2-x=x-x1+
即x=x1+1-時(shí)取等號(hào).
所以h(a)=a++2,a∈[2,+∞),
當(dāng)a∈(2,+∞)時(shí),h'(a)=1->0,h(a)在(2,+∞)內(nèi)是增函數(shù),
又h(a)在[2,+∞)上連續(xù),
故h(a)在[2,+∞)上是增函數(shù).
所以h(a)min=h(2)=
點(diǎn)評(píng):本題屬于函數(shù)與不等式的綜合問(wèn)題,利用導(dǎo)數(shù)的基本知識(shí)確定出相關(guān)的關(guān)系,列出相關(guān)的不等式進(jìn)行綜合轉(zhuǎn)化.本題考查學(xué)生的轉(zhuǎn)化與化歸思想,考查不等式的基本方法和技巧.考查導(dǎo)數(shù)的工具作用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)f(1)>0,求證:
(1)方程f(x)=0有實(shí)數(shù)根;
(2)-2<
b
a
<-1;
(3)設(shè)x1,x2是方程f(x)=0的兩個(gè)實(shí)數(shù)根,則
3
3
≤|x1-x2|
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x1,x2是方程x2+px+q=0的兩實(shí)根,x1+1,x2+1是關(guān)于x的方程x2+qx+p=0的兩實(shí)根,則p=
-1
-1
,q=
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)x1,x2數(shù)學(xué)公式+x(a,b∈R,a>0)的兩個(gè)極值點(diǎn),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)如果x1<2<x2<4,求f′(-2)的取值范圍;
(Ⅱ)如果0<x1<2,x2-x1=2,求證:數(shù)學(xué)公式;
(Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)時(shí),函數(shù)g(x)=-f′(x)+2(x2-x)的最大值為h(a),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年北京市東城區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)x1,x2+x(a,b∈R,a>0)的兩個(gè)極值點(diǎn),f′(x)為f(x)的導(dǎo)函數(shù).
(Ⅰ)如果x1<2<x2<4,求f′(-2)的取值范圍;
(Ⅱ)如果0<x1<2,x2-x1=2,求證:;
(Ⅲ)如果a≥2,且x2-x1=2,x∈(x1,x2)時(shí),函數(shù)g(x)=-f′(x)+2(x2-x)的最大值為h(a),求h(a)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案