若集合A1,A2,…,An滿(mǎn)足A1∪A2∪…∪An=A,則稱(chēng)A1,A2,…,An為集合A的一種拆分.已知:
①當(dāng)A1∪A2={a1,a2,a3}時(shí),有33種拆分;
②當(dāng)A1∪A2∪A3={a1,a2,a3,a4}時(shí),有74種拆分;
③當(dāng)A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}時(shí),有155種拆分;
……
由以上結(jié)論,推測(cè)出一般結(jié)論:
當(dāng)A1∪A2∪…∪An={a1,a2,a3,…,an+1}時(shí),有 種拆分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將1,2,3, ,9這9個(gè)正整數(shù)分別寫(xiě)在三張卡片上,要求每一張卡片上的任意兩數(shù)之差都不在這張卡片上.現(xiàn)在第一張卡片上已經(jīng)寫(xiě)有1和5,第二張卡片上寫(xiě)有2,第三張卡片上寫(xiě)有3,則6應(yīng)該寫(xiě)在第 張卡片上;第三張卡片上的所有數(shù)組成的集合是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
用數(shù)學(xué)歸納法證明≥n(a,b是非負(fù)實(shí)數(shù),n∈N+)時(shí),假設(shè)n
=k命題成立之后,證明n=k+1命題也成立的關(guān)鍵是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
對(duì)于大于1的自然數(shù)的三次冪可用奇數(shù)進(jìn)行以下方式的“分裂”:.仿此,若的“分裂數(shù)”中有一個(gè)是2015,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
)在計(jì)算“1×2+2×3+…+n(n+1)”時(shí),某同學(xué)學(xué)到了如下一種方法:先改寫(xiě)第k項(xiàng):
k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),…,
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].
相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).
類(lèi)比上述方法,請(qǐng)你計(jì)算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其結(jié)果為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,三角形數(shù)陣滿(mǎn)足:
(1)第n行首尾兩數(shù)均為n;
(2)表中的遞推關(guān)系類(lèi)似楊輝三角4則第n行(n≥2)第2個(gè)數(shù)是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知…,若(a,t均為正實(shí)數(shù)),則類(lèi)比以上等式,可推測(cè)a,t的值,a+t= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
在直角三角形中,,過(guò)作邊的高,有下列結(jié)論。請(qǐng)利用上述結(jié)論,類(lèi)似地推出在空間四面體中,若,點(diǎn)到平面的高為,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
觀察下列等式:
+=1;
+++=12;
+++++=39;
……
則當(dāng)m<n且m,n∈N時(shí),
++++…++=________(最后結(jié)果用m,n表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com