已知向量
a
=(sinx,
3
2
),
b
=(
1
2
,cosx)
,f(x)=
a
b

(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(1)運(yùn)用向量的數(shù)量積的坐標(biāo)表示,結(jié)合兩角和的正弦公式,化簡(jiǎn)即可得到;
(2)運(yùn)用正弦函數(shù)的單調(diào)增區(qū)間,解不等式即可得到所求的增區(qū)間.
解答: 解:(1)由于向量
a
=(sinx,
3
2
),
b
=(
1
2
,cosx)

則f(x)=
a
b
=
1
2
sinx+
3
2
cosx

=sinxcos
π
3
+cosxsin
π
3
=sin(x+
π
3
)
;
(2)由-
π
2
+2kπ≤x+
π
3
π
2
+2kπ
,k∈Z,
-
6
+2kπ≤x≤
π
6
+2kπ
,k∈Z,
∴函數(shù)y=f(x)的單調(diào)遞增區(qū)間是[-
6
+2kπ,
π
6
+2kπ]
,k∈Z.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的坐標(biāo)表示,考查兩角和的正弦公式,考查正弦函數(shù)的單調(diào)增區(qū)間,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P是橢圓
x2
100
+
y2
36
=1
上一點(diǎn),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),若∠F1PF2=60°,則△PF1F2的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x-a|+b,a,b∈R
(1)若a=1,b=-
1
4
,求函數(shù)f(x)的零點(diǎn);
(2)若函數(shù)f(x)在[0,1]上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)向量
AB
AC
的夾角為120°且
AB
AC
=-2,設(shè)兩點(diǎn)B,C的中點(diǎn)為點(diǎn)D,則|
AD
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn,且滿足Sn=2an-2.(n∈N*
(1)求數(shù)列{an}的通項(xiàng)an
(2)若數(shù)列{bn}滿足bn=log2an,Tn為數(shù)列{
bn
an
}的前n項(xiàng)和,求證Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2x+y-4≤0
x≥0
y≥0

(1)求不等式組所表示的平面區(qū)域的面積;
(2)若目標(biāo)函數(shù)為z=x+y,則當(dāng)x,y取何值時(shí),z有最大值?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=h(x)的圖象與函數(shù)y=ax(a>1)的圖象關(guān)于直線y=x對(duì)稱,f(x)=h(x+1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)在區(qū)間[m,n](m>-1)上的值域?yàn)閇loga
p
m
,loga
p
n
],求實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=loga(x2-3x+3),F(xiàn)(x)=af(x)-g(x),其中a>1.若w≥F(x)對(duì)?x∈(-1,+∞)恒成立,求實(shí)數(shù)w的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,條件p:函數(shù)f(x)=(a2-2a-2)x是增函數(shù),條件q:函數(shù)g(x)=xa+2在區(qū)間(0,+∞)上是減函數(shù),那么p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“(a-b)a2<0”是“a<b”的( 。l件.
A、充要
B、充分而不必要
C、必要而不充分
D、既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案