13.已知不等式組$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$所表示的平面區(qū)域為D.若目標(biāo)函數(shù)z=ax-y-2在區(qū)域D上的最大值為2,則實數(shù)a的值為( 。
A.-2B.4C.-2或4D.-4或4

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù),由最大值為2求得a值.

解答 解:由約束條件$\left\{\begin{array}{l}x+y≤1\\ x-y≥-1\\ y≥0\end{array}\right.$作出可行域如圖,

化目標(biāo)函數(shù)z=ax-y-2為y=ax-z-2,
由圖可知,當(dāng)a>0時,直線y=ax-z-2過B(1,0)時,直線在y軸上的截距最小,z有最大值為a-2=2,得a=4;
當(dāng)a<0時,直線y=ax-z-2過A(-1,0)時,直線在y軸上的截距最小,z有最大值為-a-2=2,得a=-4.
∴實數(shù)a的值為-4或4.
故選:D.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)=-x2+2x+3,若函數(shù)g(x)=f(x)-mx.若在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍{m|m≤-2或m≥6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(0,-$\sqrt{5}$)是中心在原點,長軸在x軸上的橢圓的一個頂點,離心率為$\frac{\sqrt{6}}{6}$,橢圓的左右焦點分別為F1和F2
(1)求橢圓方程;
(2)點M在橢圓上,求△MF1F2面積的最大值;
(3)試探究橢圓上是否存在一點P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知整數(shù)對的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按規(guī)律,第600個數(shù)對為(5,31).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知p:方程x2+mx+1=0有兩個不等的正實根;q:方程4x2+4(m-2)x+1=0無實數(shù)根.若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(Ⅰ)若關(guān)于x的方程|f(x)|=g(x)只有一個實數(shù)解,求實數(shù)a的取值范圍;
(Ⅱ)若當(dāng)x∈R時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)若a<0,求函數(shù)h(x)=f(x)+g(x)在[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點(1,$\frac{3}{2}$).
(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點P($\frac{1}{5}$,0),有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知若函數(shù)f(x)=x2+2(a-1)x+2
(1)當(dāng)a=2時,試證明f(x)在(0,+∞)上是增函數(shù);
(2)若f(f(2))=14,試求a的值;
(3)若函數(shù)f(x)在區(qū)間(-∞,4)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a2+4b2=1,則2a2+4ab的最大值為$\sqrt{2}+1$.

查看答案和解析>>

同步練習(xí)冊答案