三個(gè)不重合的平面,能把空間分成n個(gè)部分,則n的所有可能值為( 。
分析:分別討論三個(gè)平面的位置關(guān)系,根據(jù)它們位置關(guān)系的不同,確定平面把空間分成的部分?jǐn)?shù)目.
解答:C解:若三個(gè)平面互相平行,則可將空間分為4部分;
若三個(gè)平面有兩個(gè)平行,第三個(gè)平面與其它兩個(gè)平面相交,則可將空間分為6部分;
若三個(gè)平面交于一線,則可將空間分為6部分;
若三個(gè)平面兩兩相交且三條交線平行(聯(lián)想三棱柱三個(gè)側(cè)面的關(guān)系),則可將空間分為7部分;
若三個(gè)平面兩兩相交且三條交線交于一點(diǎn)(聯(lián)想墻角三個(gè)墻面的關(guān)系),則可將空間分為8部分;
故n等于4,6,7或8.
故選C.
點(diǎn)評:本題考查平面的基本性質(zhì)及推論,要討論三個(gè)平面不同的位置關(guān)系.考查學(xué)生的空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、已知,l,m是兩條不重合的直線,α,β,γ是三個(gè)不重合的平面,給出下列條件,能得到α∥β的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P表示點(diǎn),m,n,l表示兩兩不重合的三條直線,以α,β表示兩個(gè)不重合的平面,那么下列四個(gè)命題:①m⊥α,若n⊥α,則m∥n;②mα,n∩α=P,l是n在α內(nèi)的射影.若m⊥l,則m⊥n;③m⊥α,若n∥a,l∥α,則m⊥n,m⊥l;④m⊥α,若m⊥β,則α∥β中逆命題能成立的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知,l,m是兩條不重合的直線,α,β,γ是三個(gè)不重合的平面,給出下列條件,能得到α∥β的是


  1. A.
    l∥α,l∥β
  2. B.
    α⊥γ,β⊥γ
  3. C.
    m?α,l?α,m∥β,l∥β
  4. D.
    l⊥α,m⊥β,l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省廈門市高三3月質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知,l,m是兩條不重合的直線,α,β,γ是三個(gè)不重合的平面,給出下列條件,能得到α∥β的是( )
A.l∥α,l∥β
B.α⊥γ,β⊥γ
C.m?α,l?α,m∥β,l∥β
D.l⊥α,m⊥β,l∥m

查看答案和解析>>

同步練習(xí)冊答案