分析 由三視圖可知:平面ABCD⊥平面ABFE,AD⊥平面ABFE,四邊形ABCD是邊長(zhǎng)為2的正方形,底面ABFE是邊長(zhǎng)為2的正方形,M,N分別為AF,BC的中點(diǎn).
(1)取BF的中點(diǎn)P,連接MP,NP.又M,N分別為AF,BC的中點(diǎn).利用三角形中位線定理、面面平行的判定定理可得:平面MNP∥平面CDEF,即可證明MN∥平面CDEF.
(2)利用線面垂直的判定與性質(zhì)定理可得:AH⊥平面CDEF,即可證明MN⊥AH;
(3)利用VA-CDEF=$\frac{1}{3}×AH×{S}_{CDEF}$即可得出.
解答 解:由三視圖可知:平面ABCD⊥平面ABFE,AD⊥平面ABFE,四邊形ABCD是邊長(zhǎng)為2的正方形,底面ABFE是邊長(zhǎng)為2的正方形,M,N分別為AF,BC的中點(diǎn).
(1)證明:取BF的中點(diǎn)P,連接MP,NP.
又M,N分別為AF,BC的中點(diǎn).
∴NP∥CF,MP∥AB,
又AB∥EF,
可得MP∥EF.
∴MP∥平面CDEF,NP∥平面CDEF,
又MP∩NP=P,MP?平面CDEF,NP?平面CDEF.
∴平面MNP∥平面CDEF;
∴MN∥平面CDEF.
(2)證明:由題意AH⊥DE,
∵AD⊥平面ABFE,∴AD⊥EF.
又FE⊥AE,AD∩AE=A,
∴FE⊥平面ADE,
∴FE⊥AH,
∵DE∩EF=E,
∴AH⊥平面CDEF,
∵M(jìn)N∥平面CDEF,
∴AH⊥MN,即MN⊥AH;
(3)解:由(2)可知AH⊥平面CDEF.
∵S四邊形CDEF=EF•DE=$2×2\sqrt{2}$=4$\sqrt{2}$,AH=$\sqrt{2}$,
∴VA-CDEF=$\frac{1}{3}×\sqrt{2}×4\sqrt{2}$=$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查了線面平行與垂直的判定及其性質(zhì)定理、四棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,1) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,0,0) | B. | (1,0,1) | C. | (1,1,1) | D. | (1,1,0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com