數(shù)列{an}中a1=3,已知點(diǎn)(an,an+1)在直線y=x+2上,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an•3n,求數(shù)列{bn}的前n項(xiàng)和Tn.
【答案】
分析:(1)把點(diǎn)(a
n,a
n+1)代入直線y=x+2中可知數(shù)列{a
n}是以3為首項(xiàng),以2為公差的等差數(shù),進(jìn)而利用等差數(shù)列的通項(xiàng)公式求得答案.
(2)把(1)中求得a
n代入b
n=a
n•3
n,利用錯(cuò)位相減法求得數(shù)列{b
n}的前n項(xiàng)和T
n.
解答:解:(1)∵點(diǎn)(a
n,a
n+1)在直線y=x+2上.
∴數(shù)列{a
n}是以3為首項(xiàng),以2為公差的等差數(shù),
∴a
n=3+2(n-1)=2n+1
(2)∵b
n=a
n•3
n,
∴b
n=(2n+1)•3
n∴T
n=3×3+5×3
2+7×3
3+…+(2n-1)•3
n-1+(2n+1)•3
n①
∴3T
n=3×3
2+5×3
3+…+(2n-1)•3
n+(2n+1)•3
n+1②
由①-②得-2T
n=3×3+2(3
2+3
3++3
n)-(2n+1)•3
n+1=
=-2n•3
n+1∴T
n=n•3
n+1.
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式.當(dāng)數(shù)列由等比和等差數(shù)列構(gòu)成的時(shí)候,常可用錯(cuò)位相減法求和.