是拋物線上的一點,過點的切線方程的斜率可通過如下方式求得: 在兩邊同時對x求導,得:,所以過的切線的斜率:,試用上述方法求出雙曲線處的切線方程為___________.
解:由雙曲線x2-y2/2 =1,得到y(tǒng)2=2x2-2,
根據(jù)題意,兩邊同時對x求導得:2yy′=4x,解得y′="2x" /y ,
由P( 2 , ),得到過P得切線的斜率k=2,
則所求的切線方程為:y-  =2(x- 2 ),即2x-y-  =0.
故答案為:2x-y-  =0
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

(2)當時,若,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三點O(0,0),A(-2,1),B(2,1),曲線C上任意一點M(x,y)滿足.
(1)  求曲線C的方程;
(2)動點Q(x0,y0)(-2<x0<2)在曲線C上,曲線C在點Q處的切線為l向:是否存在定點P(0,t)(t<0),使得l與PA,PB都不相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值。若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點P是拋物線上的點,設點P到拋物線準線的距離為,到圓上一動點Q的距離為的最小值是       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為拋物線上不同兩點,且直線傾斜角為銳角,為拋物線焦點,若 則直線斜率為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點在以點為焦點的拋物線為參數(shù))上,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A、B是拋物線上的兩點,O是拋物線的頂點,OA⊥OB.
(I)求證:直線AB過定點M(4,0);
(II)設弦AB的中點為P,求點P到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

長度為的線段AB的兩個端點A、B都在拋物線上滑動,則線段AB的中點M到軸的最短距離是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線內一點A(1,1)作弦BC,若A為BC的中點,則直線BC的方程為      

查看答案和解析>>

同步練習冊答案