設(shè)橢圓C1和拋物線C2的焦點(diǎn)均在軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表中:
3 | -2 | 4 | ||
0 | -4 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分16分)如圖:為保護(hù)河上古橋,規(guī)劃建一座新橋,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū),規(guī)劃要求,新橋與河岸垂直;保護(hù)區(qū)的邊界為圓心在線段上并與相切的圓,且古橋兩端和到該圓上任一點(diǎn)的距離均不少于80,經(jīng)測(cè)量,點(diǎn)位于點(diǎn)正北方向60處,點(diǎn)位于點(diǎn)正東方向170處,(為河岸),.
(1)求新橋的長(zhǎng);
(2)當(dāng)多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:()過點(diǎn)(2,0),且橢圓C的離心率為.
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),若果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:x2+y2=9,點(diǎn)A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對(duì)于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•重慶)如圖,橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,離心率,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取垂直于x軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.若PQ⊥P'Q,求圓Q的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com