直線與圓的位置關(guān)系為(  )
A.相交B.相切C.相離D.以上都有可能
A
 因為直線方程為所以直線恒過,又因為
,所以點(1,1)在圓上,由于直線不表示與x軸平行的直線,所以直線與圓恒相交。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知:圓C:x2+(y-a)2=a2(a>0),動點A在x軸上方,圓A與x軸相切,且與圓C外切于點M

(1)若動點A的軌跡為曲線E,求曲線E的方程;
(2)動點B也在x軸上方,且A,B分別在y軸兩側(cè).圓B與x軸相切,且與圓C外切于點N.若圓A,圓C,圓B的半徑成等比數(shù)列,求證:A,C,B三點共線;
(3)在(2)的條件下,過A,B兩點分別作曲線E的切線,兩切線相交于點T,若的最小值為2,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線>0)的焦點為,準(zhǔn)線為上一點,已知以為圓心,為半徑的圓,兩點.
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,三點在同一條直線上,直線平行,且只有一個公共點,求坐標(biāo)原點到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運算求解能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓過點,且與圓關(guān)于直線對稱.
(1)求圓的方程;
(2)設(shè)為圓上一個動點,求的最小值;
(3)過點作兩條相異直線分別與圓相交于,且直線直線的傾斜角互補,為坐標(biāo)原點,試判斷直線是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分) 在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 它與曲線C:交于A、B兩點。
(1)求|AB|的長
(2)在以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點P的極坐標(biāo)為,求點P到線段AB中點M的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點作圓的弦,其中弦長為整數(shù)的共有( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線:y="k" (x+2)與圓O:相交于A、B兩點,O是坐標(biāo)原點,ABO的面積為S.
(1)試將S表示成的函數(shù)S(k),并求出它的定義域;
(2)求S的最大值,并求取得最大值時k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線C:與直線有兩個交點時,實數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

x2y2+2x+4y-3=0上到直線xy+1=0的距離為的點共有(   )
A.1個B.2個 C.3個 D.4個

查看答案和解析>>

同步練習(xí)冊答案