如果點(diǎn)M()在運(yùn)動(dòng)過程是總滿足關(guān)系式,則點(diǎn)M的軌跡方程為   _______

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸(不含原點(diǎn))上運(yùn)動(dòng),過點(diǎn)P作線段PM交x軸于點(diǎn)M,使
MP
PF
=0
;再延長(zhǎng)線段MP到點(diǎn)N,使
MP
=
PN

(Ⅰ)求動(dòng)點(diǎn)N的軌跡C的方程;
(Ⅱ)直線L與軌跡C交于A、B兩點(diǎn),如果
OA
OB
=-4且|
AB
|=4
6
,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閔行區(qū)二模)已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
,長(zhǎng)軸兩端點(diǎn)為A、B,短軸上端點(diǎn)為C.
(1)若橢圓焦點(diǎn)坐標(biāo)為F1(2
2
,0)、F2(-2
2
,0)
,點(diǎn)M在橢圓上運(yùn)動(dòng),當(dāng)△ABM的最大面積為3時(shí),求其橢圓方程;
(2)對(duì)于(1)中的橢圓方程,作以C為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作
CP
垂直于
CQ
,點(diǎn)P、Q在橢圓上,試問在y軸上是否存在一點(diǎn)T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點(diǎn)T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省月考題 題型:解答題

已知橢圓方程為,長(zhǎng)軸兩端點(diǎn)為A、B,短軸上端點(diǎn)為C.
(1)若橢圓焦點(diǎn)坐標(biāo)為,點(diǎn)M在橢圓上運(yùn)動(dòng),當(dāng)△ABM的最大面積為3時(shí),求其橢圓方程;
(2)對(duì)于(1)中的橢圓方程,作以C為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點(diǎn)P、Q在橢圓上,試問在y軸上是否存在一點(diǎn)T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點(diǎn)T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市閔行區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓方程為,長(zhǎng)軸兩端點(diǎn)為A、B,短軸上端點(diǎn)為C.
(1)若橢圓焦點(diǎn)坐標(biāo)為,點(diǎn)M在橢圓上運(yùn)動(dòng),當(dāng)△ABM的最大面積為3時(shí),求其橢圓方程;
(2)對(duì)于(1)中的橢圓方程,作以C為直角頂點(diǎn)的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點(diǎn)P、Q在橢圓上,試問在y軸上是否存在一點(diǎn)T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點(diǎn)T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年北京市豐臺(tái)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知定點(diǎn)F(1,0),動(dòng)點(diǎn)P在y軸(不含原點(diǎn))上運(yùn)動(dòng),過點(diǎn)P作線段PM交x軸于點(diǎn)M,使;再延長(zhǎng)線段MP到點(diǎn)N,使
(Ⅰ)求動(dòng)點(diǎn)N的軌跡C的方程;
(Ⅱ)直線L與軌跡C交于A、B兩點(diǎn),如果=-4且,求直線L的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案