已知一直線l與橢圓相交于A、B兩點,且弦AB的中點為P(2,1).
(I)求直線l的方程;
(II)求|AB|的長.
【答案】分析:(I)先假設直線方程,在與橢圓方程聯(lián)立得:(1+2k2)x2+4k(1-2k)x+2(1-2k)2-8=0,利用中點坐標公式即可求;
(II)由(I)得,從而可求|AB|的長.
解答:解:(I)若斜率不存在,則由橢圓的對稱性及弦AB的中點為P(2,1),知不成立
若斜率存在,設斜率為k則直線的方程為:y-1=k(x-2),∴y=kx+1-2k,
代入橢圓方程得:x2-2(kx+1)-2k2=8,
整理得:(1+2k2)x2+4k(1-2k)x+2(1-2k)2-8=0,①
,
解得:k=-1,即1的方程為:x+y-3=0
(注:也可用點差法求解)
(II)當k=-1時,方程①為:3x2-12x+10=0,

;
點評:本題主要考查直線與圓錐曲線相交時的中點弦問題,通常利用設而不求的方法,應注意進行驗證,求弦長時可直接利用弦長公式求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結(jié)果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市盧灣區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足,
(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結(jié)果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

同步練習冊答案