已知f(x)是R上的偶函數(shù),若將f(x)的圖象向右平移一個單位后,則得到一個奇函數(shù)的圖象,若f(2)=-1,則f(1)+f(2)+f(3)+…+f(2011)的值為( )
A.-1
B.0
C.1
D.不能確定
【答案】分析:由于f(x)是R上的偶函數(shù),所以該函數(shù)有對稱軸x=0,函數(shù)f(x)在右移之前有對稱中心(-1,0),故函數(shù)f(x)存在周期T=4,在利用題中的條件得到函數(shù)在一個周期內(nèi)的數(shù)值,利用周期性即可求解.
解答:解:∵f(x)是R上的偶函數(shù),
∴圖象關于y軸對稱,即該函數(shù)有對稱軸x=0,f(x)=f(-x) 用x+1換x,所以f(x+1)=f(-x-1)①
又∵將f(x)的圖象向右平移一個單位后,則得到一個奇函數(shù)的圖象,
∴函數(shù)f(x)的圖象有對稱中心(-1,0),有f(-1)=0,且f(-1-x)=-f(-1+x) ②
∴由①②得f(x+1)=-f(-1+x),可得f(x+2)=-f(x),得到f(x+4)=f(x),故函數(shù)f(x)存在周期T=4,
又f(2)=-1,f(-1)=0,
利用條件可以推得:f(-1)=f(1)=0,f(2)=-1=-f(0),f(3)=f(4-1)=0,
f(-3)=f(3)=0,f(4)=f(0)=1,
所以在一個周期中f(1)+f(2)+f(3)+f(4)=0,
所以f(1)+f(2)+f(3)+…+f(2011)=f(1)+f(2)+f(3)=-1.
故選A
點評:此題考查了利用函數(shù)的對稱性及奇偶性找到函數(shù)的周期,在利用已知的條件求出函數(shù)值.