【題目】公元263年左右,我國數(shù)學(xué)有劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,并創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的“徽率”.某同學(xué)利用劉徽的“割圓術(shù)”思想設(shè)計了一個計算圓周率的近似值的程序框圖如圖,則輸出S的值為 (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)( )
A.2.598
B.3.106
C.3.132
D.3.142
【答案】C
【解析】解:模擬執(zhí)行程序,可得:
n=6,S=3sin60°= ,
不滿足條件n>24,n=12,S=6×sin30°=3,
不滿足條件n>24,n=24,S=12×sin15°=12×0.2588=3.1056,
不滿足條件n>24,n=48,S=24×sin7.5°=24×0.1305=3.132,
滿足條件n>24,退出循環(huán),輸出S的值為3.132.
故選:C.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(cosα,sinα),設(shè) = +t (t為實(shí)數(shù)).
(1)若 ,求當(dāng)| |取最小值時實(shí)數(shù)t的值;
(2)若 ⊥ ,問:是否存在實(shí)數(shù)t,使得向量 ﹣ 和向量 的夾角為 ,若存在,請求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一個周期的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)請求出上表中的x1 , x2 , x3 , 并直接寫出函數(shù)f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2對任意x∈[0,2π]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,﹣1), =( sinx,cos2x),設(shè)函數(shù)f(x)= + .
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈(0, )時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點(diǎn)C.
(1)若C為圓弧AB的中點(diǎn),點(diǎn)D在線段OA上運(yùn)動,求| |的最小值;
(2)若D,E分別為線段OA,OB的中點(diǎn),當(dāng)C在圓弧 上運(yùn)動時,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體,第二次切削沿長方體的對角面刨開,得到兩個三棱柱,第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為( )
A.3:1
B.2:1
C.1:1
D.1:2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項(xiàng)和,對任意正整數(shù)n不等式 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.點(diǎn)E在棱PA上,且PE=2EA. (Ⅰ)求異面直線PA與CD所成的角;
(Ⅱ)求證:PC∥平面EBD;
(Ⅲ)求二面角A﹣BE﹣D的大小.(用反三角函數(shù)表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com