11.若集合A={x|y2=x,y∈R},B={y|y=sinx,x∈R},A∩B={x|0≤x≤1}.

分析 求出A中x的范圍確定出A,求出B中y的范圍確定出B,找出兩集合的交集即可.

解答 解:∵A={x|y2=x,y∈R}={x|x≥0},B={y|y=sinx}={y|-1≤y≤1},
∴A∩B={x|0≤x≤1},
故答案為:{x|0≤x≤1}.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,已知$tan(A-\frac{π}{6})=\frac{{\sqrt{3}}}{3}$.
(Ⅰ) 求A;
(Ⅱ)若a=$\sqrt{7}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知定義在R上的函數(shù)f(x)滿足f(x+4)=f(x)+f(2).若函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對(duì)稱,求f(2018);
(2)已知函數(shù)f(x)=$\sqrt{m{x^2}+(m-3)x+1}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知二次函數(shù)f(x)滿足:①$f(x)≤f({\frac{1-2a}{2}})({a∈R})$; ②若x1<x2且x1+x2=0時(shí),有f(x1)>f(x2).則實(shí)數(shù)a的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.a(chǎn)=3,b=4焦點(diǎn)在x軸上的雙曲線的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)m∈R,若函數(shù)f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函數(shù),則f(x)的單調(diào)遞增區(qū)間是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的各項(xiàng)均為正數(shù),且a1=1,對(duì)任意的n∈N*,均有an+12-1=4an(an+1),bn=2log2(1+an)-1.
(1)求證:{1+an}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}中去掉{an}的項(xiàng)后,余下的項(xiàng)組成數(shù)列{cn},求c1+c2+…+c100;
(3)設(shè)dn=$\frac{1}{_{n}•_{n+1}}$,數(shù)列{dn}的前n項(xiàng)和為T(mén)n,是否存在正整數(shù)m(1<m<n),使得T1、Tm、Tn成等比數(shù)列,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.復(fù)數(shù)z滿足iz=|1-i|,則z的虛部為$-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求下列函數(shù)的解析式.
(1)已知f(x)=x2+2x,求f(2x+1);
(2)已知f($\sqrt{x}$-1)=x+2$\sqrt{x}$,求f(x);
(3)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案