【題目】正四棱柱中,,則與平面所成角的正弦值為__________

【答案】

【解析】分析:建立空間直角坐標(biāo)系,求出平面的法向量,利用向量法即可求AD1與面BB1D1D所成角的正弦值.

詳解:以D為原點(diǎn),DA,DC,DD1分別為x軸,y軸,z軸,建立如圖所示空間直角坐標(biāo)系D﹣xyz.

設(shè)AB=1,則D(0,0,0),A(1,0,0),

B(1,1,0),C(0,1,0),D1(0,0,2),

A1(1,0,2),B1(1,1,2),C1(0,1,2).

設(shè)AD1與面BB1D1D所成角的大小為θ,=(﹣1,0,2),

設(shè)平面BB1D1D的法向量為=(x,y,z),=(1,1,0),=(0,0,2),

x+y=0,z=0.

x=1,則y=﹣1,所以=(1,﹣1,0),

sinθ=|cos<,>|=,

所以AD1與平面BB1D1D所成角的正弦值為

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個(gè)出入口設(shè)置在點(diǎn)及點(diǎn)處,且小區(qū)里有一條平行于的小路

(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(zhǎng)(精確到米)

(2)若該扇形的半徑為,已知某老人散步,從沿走到,再?gòu)?/span>沿走到,試確定的位置,使老人散步路線最長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,的直線與橢圓交于、兩點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形則橢圓的離心率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為、是雙曲線上一點(diǎn),的內(nèi)切圓半徑為,則其漸近線方程是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 恰有兩個(gè)零點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c, =
(1)求角C的大小;
(2)求sinAsinB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的右焦點(diǎn)F(1,0),過F的直線l與橢圓C交于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在點(diǎn)T,使得 為定值?若存在,求出點(diǎn)T坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=emx﹣lnx﹣2.
(1)若m=1,證明:存在唯一實(shí)數(shù)t∈( ,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機(jī)抽取了位醫(yī)護(hù)人員的關(guān)愛患者考核分?jǐn)?shù)(患者考核:分制),用相關(guān)的特征量表示;醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)(試卷考試:分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

(1)求關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到);

(2)利用(1)中的線性回歸方程,分析醫(yī)護(hù)專業(yè)考核分?jǐn)?shù)的變化對(duì)關(guān)愛患者考核分?jǐn)?shù)的影響,并估計(jì)當(dāng)某醫(yī)護(hù)人員的醫(yī)護(hù)專業(yè)知識(shí)考核分?jǐn)?shù)為分時(shí),他的關(guān)愛患者考核分?jǐn)?shù)(精確到).

參考公式及數(shù)據(jù):回歸直線方程中斜率和截距的最小二乘法估計(jì)公式分別為

,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案