已知f(x)=ax3+3x2-x+1,a∈R.
(Ⅰ)當(dāng)a=-3時(shí),求證:f(x)=在R上是減函數(shù);
(Ⅱ)如果對?x∈R不等式f′(x)≤4x恒成立,求實(shí)數(shù)a的取值范圍.
(Ⅰ)當(dāng)a=-3時(shí),f(x)=-3x3+3x2-x+1,
∵f′(x)=-9x2+6x-1=-(3x-1)2≤0,
∴f(x)在R上是減函數(shù);
(Ⅱ)∵?x∈R不等式f′(x)≤4x恒成立,
即?x∈R不等式3ax2+6x-1≤4x恒成立,
∴?x∈R不等式3ax2+2x-1≤0恒成立,
當(dāng)a≥0時(shí),?x∈R,3ax2+2x-1≤0不恒成立,
當(dāng)a<0時(shí),?x∈R不等式3ax2+2x-1≤0恒成立,
即△=4+12a≤0,
∴a≤-
1
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx+2,且f(-5)=3,則f(5)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3-bx+1且f(-4)=7,則f(4)=
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx+1,f(-2)=2,則f(2)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,則f(-3)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F(x)=ax3+bx5+cx3+dx-6,F(xiàn)(-2)=10,則F(2)的值為( 。
A、-22B、10C、-10D、22

查看答案和解析>>

同步練習(xí)冊答案