若函數(shù)y=f(x),x∈D同時滿足下列條件,(1)在D內(nèi)為單調(diào)函數(shù);(2)存在實數(shù)m,n.當x∈[m,n]時,y∈[m,n],則稱此函數(shù)為D內(nèi)等射函數(shù),設(shè)f(x)=
ax+a-3
lna
(a>0,且a≠1)則:
(1)f(x)在(-∞,+∞)的單調(diào)性為______;
(2)當f(x)為R內(nèi)的等射函數(shù)時,a的取值范圍是______.
(1)∵f(x)=
ax+a-3
lna
(a>0,且a≠1),
f(x)=
1
lna
•lna•ax
=ax>0,
∴f(x)在R上是增函數(shù).
(2)∵f(x)為等射函數(shù),
∴f(x)=
ax+a-3
lna
=x有兩個不等實根,
即ax-xlna+a-3=0有兩個不等實根,
令g(x)=ax-xlna+a-3,
∴g′(x)=axlna-lna=lna(ax-1),
令g′(x)=0,得x=0.
①當a>1時,x>0時,g′(x)>0,x<0時,g′(x)<0,
∴g(x)min=g(0)=1+a-3<0,
∴a<2,
故1<a<2;
②當0<a<1時,x>0時,g′(x)>0,x<0時,g′(x)<0,
∴g(x)min=g(0)=0,
∴0<a<1.
綜上所述,a∈(0,1)∪(1,2).
故答案為:增函數(shù),(0,1)∪(1,2).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=f(x+1)+f(x-1)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x-1)的定義域為(1,2],則函數(shù)y=f(
1x
)的定義域為
{x|x≥1}
{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)滿足f′(x)>f(x),則f(2012)與e2012f(0)的大小關(guān)系為
f(2012)>e2012f(0)
f(2012)>e2012f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f'(x)的圖象關(guān)于直線x=-
1
2
對稱,且f′(1)=0.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若對于任意實數(shù)x,
1
6
f′(x)+m>0
恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(2a-1)x-alnx,g(x)=-
4x
-alnx
(a∈R).
(1)a<0時,求f(x)的極小值;
(2)若函數(shù)y=f(x)與y=g(x)的圖象在x∈[1,3]上有兩個不同的交點M,N,求a的取值范圍.

查看答案和解析>>

同步練習冊答案