雙曲線=的漸近線的方程是________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期第五次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線C1(a>0,b>0)的焦距是實(shí)軸長(zhǎng)的2倍.若拋物線C2(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為(    )

A.x2y       B.x2y      C.x2=8y     D.x2=16y

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省十二校高三第一次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題滿分13分)

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線l,使得lG交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.

 (1)求雙曲線G的漸近線的方程;

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省濟(jì)寧市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線,使得和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)的面積最大時(shí)點(diǎn)P的坐標(biāo).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆吉林省高二上學(xué)期質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題

.已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2+y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線,使得和G交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點(diǎn),求當(dāng)的面積最大時(shí)點(diǎn)P的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 (本小題滿分13分)

已知雙曲線G的中心在原點(diǎn),它的漸近線與圓x2y2-10x+20=0相切.過(guò)點(diǎn)P(-4,0)作斜率為的直線l,使得lG交于A,B兩點(diǎn),和y軸交于點(diǎn)C,并且點(diǎn)P在線段AB上,又滿足|PA|·|PB|=|PC|2.

(1)求雙曲線G的漸近線的方程;

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點(diǎn),它的短軸是G的實(shí)軸.如果S中垂直于l的平行弦的中點(diǎn)的軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案