某校高二年級(jí)在3月份進(jìn)行一次質(zhì)量考試,考生成績(jī)情況如下表所示:
[0,400)[400,800)[480,550)[550,750)
文科考生6035196
理科考生9035x9
已知在全體考生中隨機(jī)抽取1名,抽到理科考生的概率是0.6.
(1)求x的值;
(2)讀文科考生不低于550分的6名學(xué)生的語(yǔ)文成績(jī)的莖葉圖,計(jì)算這6名文科考生的語(yǔ)文成績(jī)的平均分、中位數(shù);
(3)在(2)中的6名文科考生中隨機(jī)地選2名考生,求恰有一名考生的語(yǔ)文成績(jī)?cè)?30分以上的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,莖葉圖
專題:概率與統(tǒng)計(jì)
分析:(1)由概率可得x的方程,解方程可得x值;
(2)由平均數(shù)和中位數(shù)的定義計(jì)算可得;
(3)列舉法可得總的基本事件共15種,符合條件的共8種,由古典概型的概率公式計(jì)算可得.
解答: 解:(1)由題意可得
90+55+x+9
60+35+19+6+90+55+x+9
=0.6,解得x=26;
(2)6名文科考生的語(yǔ)文成績(jī)的平均分為
.
x
=
1
6
(111+120+125+128+132+134)=125
中位數(shù)為
125+128
2
=126.5
(3)從6名文科考生中隨機(jī)地選2名考生,基本事件有:(111,120),(111,125),(111,128),
(111,132),(111,134),(120,125),(120,128),(120,132),(120,134),
(125,128),(125,132),(125,134),(128,132),(128,134),(132,134).共15種.
記“恰有一名考生的語(yǔ)文成績(jī)?cè)?30以上”為事件A,
其中有(111,132),(111,134),(120,132),(120,134),(125,132),(125,134),(128,132),(128,134).共8種.
∴恰有一名考生的語(yǔ)文成績(jī)?cè)?3(0分)以上的概率為P(A)=
8
15
點(diǎn)評(píng):本題考查古典概型及其概率公式,涉及莖葉圖和平均數(shù)中位數(shù),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-2x-ln(x+1)2
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)F(x)=f(x)-x2+3x+a在[
1
2
,2]上只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試用不等式組表示由直線x+y+2=0,x+2y+1=0,2x+y+1=0圍成的三角形區(qū)域(包括邊界)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)點(diǎn)A(
3
,-2),B(-2
3
,1)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:an≠±1,a1=
1
2
,3(1-an+12)=2(1-an2),bn=1-an2,cn=an+12-an2(n∈N*),
(1)證明數(shù)列{bn}是的等比數(shù)列,并求數(shù)列{bn}、{cn}的通項(xiàng)公式.
(2)是否存在數(shù)列{cn}的不同項(xiàng)ci,cj,ck(i<j<k)使之成為的等差數(shù)列?若存在,請(qǐng)求出這樣不同項(xiàng)ci,cj,ck(i<j<k);若不存在,請(qǐng)說(shuō)明理由.
(3)是否存在最小的自然數(shù)M,對(duì)一切n∈N*都有(n-2)cn<M恒成立?若存在,求出M的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

斜率為1的直線L經(jīng)過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F,且交拋物線于A,B兩點(diǎn),若AB的中點(diǎn)到拋物線準(zhǔn)線的距離為2,則p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求關(guān)于x的二次函數(shù)y=x2-2tx+1在-1≤x≤1上的最大值(t為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)調(diào)查某地若干戶家庭的年收入x(萬(wàn)元)和年飲食支出y(萬(wàn)元)具有線性相關(guān)關(guān)系,并得到y(tǒng)關(guān)于x的線性回歸直線方程:
y
=0.245x+0.321,由回歸直線方程可知,家庭年收入每增加l萬(wàn)元,年飲食支出平均增加
 
萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

e
1
e
2
是夾角為
π
3
的單位向量,且
a
=-2
e
1
-
e
2
,
b
=3
e
1-2
e
2,則
a
b
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案