已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1],f(x)=x,那么在區(qū)間[-1,3]內(nèi),關(guān)于x的方程y=kx+k+1(其中k為不等于1的實(shí)數(shù))有四個(gè)不同的實(shí)根,則k的取值范圍是
 
分析:利用函數(shù)的奇偶性和周期性可畫出函數(shù)的圖象,利用數(shù)形結(jié)合的思想解答.由已知需要先畫出函數(shù)在[0,1]上的圖象,再利用奇偶性畫出在[-1,0]上的圖象,利用周期性可畫出在區(qū)間[-1,3]內(nèi)的函數(shù)圖象,即可解答本題.
解答:解:由已知可畫出函數(shù)f(x)的圖象,先畫出f(x)在x∈[0,1]上的圖象,利用偶函數(shù)畫出
在x∈[-1,0]上的圖象,再利用函數(shù)的周期性畫出R上的圖象,下面畫出的是函數(shù)在x∈[-1,3]上
的圖象,如圖:
精英家教網(wǎng)
又可知關(guān)于x的方程y=kx+k+1(k≠1)恒過點(diǎn)(-1,1),在上圖中畫出直線L0,L1,L2,顯然當(dāng)這些過定點(diǎn)(-1,1)
的直線位于L0與L2之間如L1時(shí),才能與函數(shù)f(x)有四個(gè)交點(diǎn);又因?yàn)橹本L0與L2的斜率為k0=0和k2=-
1
3
,因此k的
取值范圍應(yīng)為:-
1
3
<k< 0

故答案為:(-
1
3
,0)
點(diǎn)評(píng):本題考查函數(shù)的奇偶性,周期性以及綜合應(yīng)用,數(shù)形結(jié)合的思想,直線系方程的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[-1,3]內(nèi),關(guān)于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4個(gè)不同的根,則k的取值范圍是( 。
A、(-
1
4
,0)
B、(-1,0)
C、(-
1
2
,0)
D、(-
1
3
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,若關(guān)于x的方程f(x)=kx+k+1在[-1,3]內(nèi)恰有四個(gè)不同的根,則實(shí)數(shù)k的取值范圍是
(-
1
3
,0)
(-
1
3
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州三模)已知f(x)是以2為周期的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,那么在區(qū)間[-1,3]內(nèi)關(guān)于x的f(x)=kx+k+1(k∈R,且k≠1)方程的根的個(gè)數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是以2為周期的函數(shù),且當(dāng)x∈[1,3]時(shí),f(x)=4x+log2x,則f(-1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案