已知,則1+3sinα•cosα-2cos2α=   
【答案】分析:利用兩個(gè)角的正切公式將已知等式展開(kāi),通過(guò)解方程求出tanα,將待求的式子看成分母是1的分式,將分子、分母同時(shí)除以cos2α得到關(guān)于tanα的式子,求出值.
解答:解:
解得
1+3sinα•cosα-2cos2α
=sin2α+3sinαcosα+cos2α
=
=
=
故答案為
點(diǎn)評(píng):求分子、分母是關(guān)于sinx,cox的同次的式子的值,一般采取分子、分母同除以cosx的最高次項(xiàng),轉(zhuǎn)化為關(guān)于tanx的式子,再求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(2cosα,
3
sinα)、B(2cosβ,
3
sinβ)、C(-1,0)
是平面上三個(gè)不同的點(diǎn),若存在實(shí)數(shù)λ,使得
CA
BC
,則λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+?)-cos(ωx+?)(0<?<π,ω>0)
,
(Ⅰ)若函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為
π
2
,且它的圖象過(guò)(0,1)點(diǎn),求函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)將(Ⅰ)中的函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若f(x)的圖象在x∈(a,a+
1
100
) (a∈R)
上至少出現(xiàn)一個(gè)最高點(diǎn)或最低點(diǎn),則正整數(shù)ω的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A.已知方程|2x-1|-|2x+1|=a+1有實(shí)數(shù)解,則a的取值范圍為
[-3,-1)
[-3,-1)

B.如圖,四邊形ABCD內(nèi)接于⊙O,BC是直徑,MN切⊙O于A,∠MAB=25,則∠D=
115°
115°

C.設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的參數(shù)方程為
x=1+2t
y=1+t
(t為參數(shù)),則直線l被曲線C截得的弦長(zhǎng)為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin
πx
R
的圖象上相鄰的一個(gè)最大值點(diǎn)與一個(gè)最小值點(diǎn)恰好都在圓x2+y2=R2上,則函數(shù)f(x)的圖象的一條對(duì)稱軸可以是( 。
A、直線x=
π
2
B、直線x=
1
2
C、直線x=-π
D、直線x=-1

查看答案和解析>>

同步練習(xí)冊(cè)答案