已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
(1)x2-=1(2)y=±(x-2)
【解析】學生錯【解析】
【解析】
(2)設A(x1,y1),B(x2,y2),F(xiàn)(2,0),直線l:y=k(x-2),
由消元得(k2-3)x2-4k2x+4k2+3=0,x1+x2=,x1x2=,y1-y2=k(x1-x2),
△F1AB的面積S=c|y1-y2|=2|k|·|x1-x2|=2|k|=2|k|·=6,k4+8k2-9=0,k2=1,k=±1,所以直線l的方程為y=±(x-2).
審題引導:(1)直線與雙曲線相交問題時的處理方法;(2)△F1AB面積的表示.
規(guī)范解答:【解析】
(1)依題意,b=,=2?a=1,c=2,(4分)
∴雙曲線的方程為x2-=1.(6分)
(2)設A(x1,y1),B(x2,y2),F(xiàn)2(2,0),直線l:y=k(x-2),
由消元得(k2-3)x2-4k2x+4k2+3=0,(8分)
k≠±時,x1+x2=,x1x2=,y1-y2=k(x1-x2),(10分)
△F1AB的面積S=c|y1-y2|=2|k|·|x1-x2|=2|k|·=2|k|·=6,k4+8k2-9=0,k2=1,k=±1,(14分)
所以直線l的方程為y=±(x-2).(16分)
錯因分析:解本題時容易忽略二次項系數(shù)不為零,即k≠±這一條件
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題
P(x,y)在圓C:(x-1)2+(y-1)2=1上移動,試求x2+y2的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題
已知曲線C上動點P(x,y)到定點F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1)求曲線C的軌跡方程;
(2)以曲線C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與曲線C交于點M與點N,求·的最小值,并求此時圓T的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題
若拋物線y2=2px的焦點與橢圓=1的右焦點重合,則p=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題
如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點.
(1)設P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題
已知橢圓C:=1(a>b>0)的離心率為,與過右焦點F且斜率為k(k>0)的直線相交于A、B兩點.若=3,則k=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:解答題
已知,直線,為平面上的動點,過點作的垂線,垂足為點,且.
(1)求動點的軌跡曲線的方程;
(2)設動直線與曲線相切于點,且與直線相交于點,試探究:在坐標平面內(nèi)是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:選擇題
執(zhí)行右面的程序框圖,若輸入N=2013,則輸出S等于( )
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西西安鐵一中國際合作學校高三下第一次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
定義在區(qū)間的奇函數(shù)為增函數(shù),偶函數(shù)在區(qū)間的圖象與的圖象重合,設,給出下列不等式:
① ②
③ ④其中成立的是( )
A.①與④ B.②與③ C.①與③ D.②與④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com