求值或化簡(jiǎn):
a-4b2
3ab2
(a>0,b>0).
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件根據(jù)根式與分?jǐn)?shù)指數(shù)冪的互化,分?jǐn)?shù)指數(shù)冪的運(yùn)算法則化簡(jiǎn)所給的式子,可得結(jié)果.
解答: 解:∵a>0,b>0,
a-4b2
3ab2
=
a-4•b2•a
1
3
•b
2
3
=
a-
11
3
•b
8
3
=a-
11
6
b
4
3
點(diǎn)評(píng):本題主要考查根式與分?jǐn)?shù)指數(shù)冪的互化,分?jǐn)?shù)指數(shù)冪的運(yùn)算法則的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是一個(gè)數(shù)集,且至少含有兩個(gè)數(shù),若對(duì)任意a,b∈P,都有a+b、a-b,ab、
a
b
∈P (除數(shù)b≠0),則稱(chēng)P是一個(gè)數(shù)域.例如有理數(shù)集Q是數(shù)域;數(shù)集F={a+b
2
|a,b∈Q}也是數(shù)域.有下列命題:
①數(shù)域必含有0,1兩個(gè)數(shù);
②整數(shù)集是數(shù)域;
③若有理數(shù)集Q⊆M,則數(shù)集M必為數(shù)域;
④數(shù)域必為無(wú)限集;
⑤存在無(wú)窮多個(gè)數(shù)域.
其中正確的命題的序號(hào)是
 
.(把你認(rèn)為正確的命題的序號(hào)填填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

借助計(jì)算器或計(jì)算機(jī),用二分法求方程(x+1)(x-2)(x-3)=1在區(qū)間(-1,0)內(nèi)的整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列條件能推出平面α與平面β平行的是( 。
A、α內(nèi)有無(wú)窮多條直線(xiàn)與β平行
B、直線(xiàn)a∥α,a∥β
C、直線(xiàn)b∥α,平面α∥平面β
D、異面直線(xiàn)a,b滿(mǎn)足:a?α,直線(xiàn)b?β,且α∥β,b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(
1
3
x,若f(a+1)≥
1
3
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,函數(shù)f(x)=tanx在x=-
π
4
處與直線(xiàn)y=ax+b+
π
2
相切,設(shè)g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實(shí)數(shù)m( 。
A、有極小值-e
B、有極小值e
C、有極大值e
D、有極大值2e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax3+2(a≠0)在[-6,6]上滿(mǎn)足f(-6)>1,f(6)<1,試判斷方程f(x)=1在[-6,6]內(nèi)實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)各項(xiàng)均不為0的數(shù)列{an}滿(mǎn)足an+1=
2
an
(n≥1),Sn是其前n項(xiàng)和,若a2a4=2a5,則a3=( 。
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=9,a3,a5,a8成等比數(shù)列.
(Ⅰ) 求數(shù)列{an}的通項(xiàng)公式an及Sn;
(Ⅱ) 若cn=n2+λan,n=1,2,3,…,問(wèn)是否存在實(shí)數(shù)λ,使得數(shù)列{cn}為單調(diào)遞增數(shù)列?若存在,請(qǐng)求出λ的取值范圍;不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案