【題目】已知表1是某年部分日期的天安門廣場升旗時刻表.

表1:某年部分日期的天安門廣場升旗時刻表

將表1中的升旗時刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如:可化為).

(Ⅰ)請補充完成下面的頻率分布表及頻率分布直方圖;

分組

頻數(shù)

頻率

4:00—4:59

3

5:00—5:59

0.25

6:00—6:59

7:00—7:59

5

合計

20

(Ⅱ)若甲學(xué)校從上表日期中隨機(jī)選擇一天觀看升旗.試估計甲學(xué)校觀看升旗的時刻早于6:00的概率;

(Ⅲ)若甲,乙兩個學(xué)校各自從表1中五月、六月的日期中隨機(jī)選擇一天觀看升旗, 求兩校觀看升旗的時刻均不早于5:00的概率.

【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ).

【解析】

(Ⅰ)由天安門廣場升旗時刻表即可得到頻率分布表及頻率分布直方圖;

(Ⅱ)利用古典概型概率公式可得結(jié)果;

(Ⅲ)利用古典概型概率公式可得結(jié)果.

解:(Ⅰ)頻率分布表及頻率分布直方圖如下:

分組

頻數(shù)

頻率

4:00—4:59

3

0.15

5:00—5:59

5

0.25

6:00—6:59

7

0.35

7:00—7:59

5

0.25

合計

20

1

(II) 由表知,甲學(xué)校從上表20次日期中隨機(jī)選擇一天觀看升旗,觀看升旗的時刻早于6:00的日期為8次,所以,估計甲學(xué)校觀看升旗的時刻早于6:00的概率為

(III) 由表知,五月、六月的日期中不早于5:00的時間為2次,共5次.

設(shè)按表1中五月、六月的日期先后順序,甲選擇一天觀看升旗分別為,乙選擇一天觀看升旗分別為,

則甲,乙兩個學(xué)校觀看升旗的時刻的基本事件空間為:其中基本事件為25個.

設(shè)兩校觀看升旗的時刻均不早于5:00為事件,包含基本事件為:

,共4個,

所以,即兩校觀看升旗的時刻均不早于5:00的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鷹潭市龍虎山花語世界位于中國第八處世界自然遺產(chǎn),世界地質(zhì)公元、國家自然文化雙遺產(chǎn)地、國家AAAAA級旅游景區(qū)﹣﹣龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風(fēng)格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風(fēng)格,景觀設(shè)計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達(dá)萬人.某學(xué)校社團(tuán)為了解進(jìn)園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在2017年4月1日賞花旺季對進(jìn)園游客進(jìn)行取樣調(diào)查,從當(dāng)日12000名游客中抽取100人進(jìn)行統(tǒng)計分析,結(jié)果如下:(表一)

年齡

頻數(shù)

頻率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合計

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答題卡中補全頻率分布直方圖,并估計2017年4月1日當(dāng)日接待游客中30歲以下人數(shù).
(2)完成表格二,并問你能否有97.5%的把握認(rèn)為在觀花游客中“年齡達(dá)到50歲以上”與“性別”相關(guān)?

50歲以上

50歲以下

合計

男生

女生

合計

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:k2= ,其中n=a+b+c+d)
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運游客免費領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這10人中選取2人接受電視臺采訪,設(shè)這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),其中.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若方程有三個互不相同的根0,,,其中.

①是否存在實數(shù),使得成立?若存在,求出的值;若不存在,說明理由.

②若對任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運會, 某校開設(shè)了冰球選修課,12名學(xué)生被分成甲、乙兩組進(jìn)行訓(xùn)練.他們的身高(單位:cm)如下圖所示:

設(shè)兩組隊員身高平均數(shù)依次為,,方差依次為,,則下列關(guān)系式中完全正確的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在區(qū)間內(nèi)任取兩個實數(shù),,且,若不等式恒成立,則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在道路邊安裝路燈,路面,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內(nèi).

(1)當(dāng)燈桿長度為多少時,燈罩軸線正好通過路面的中線?

(2)如果燈罩軸線AC正好通過路面的中線,此時有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

同步練習(xí)冊答案