已知函數(shù)①f(x)=lnx;②f(x)=cosx;③f(x)=ex;④f(x)=ecosx.其中對于f(x)定義域內(nèi)的任意一個x1都存在唯一個x2,使f(x1)f(x2)=1成立的函數(shù)是    .(寫出所有滿足條件的函數(shù)的序號)
【答案】分析:由題意知若使得f(x1)f(x2)=1成立的函數(shù)一定是單調(diào)函數(shù),②④不是單調(diào)函數(shù),不合題意.因為對于函數(shù)f(x)=lnx當x1=1時,不存在x2使得f(x1)f(x2)=1成立.得到結(jié)果.
解答:解:由題設知,對于f(x)定義域內(nèi)的任意一個自變量x1,
存在定義域內(nèi)的唯一一個自變量x2
使得f(x1)f(x2)=1成立的函數(shù)一定是單調(diào)函數(shù),②④不是單調(diào)函數(shù),不合題意.
因為對于函數(shù)f(x)=lnx當x1=1時,不存在x2使得f(x1)f(x2)=1成立,
∴由此可知,滿足條件的函數(shù)有③.
故答案為:③.
點評:本題考查函數(shù)的單調(diào)性及函數(shù)的特殊點的值,本題解題的關鍵是看出函數(shù)的單調(diào)性,并且注意函數(shù)自變量特殊值的性質(zhì),本題是一個中檔題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案