【題目】定義在D上的函數(shù)f(x),如果滿足對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界,已知函數(shù)f(x)=1+x+ax2
(1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)在(﹣∞,0)上的值域,判斷函數(shù)f(x)在(﹣∞,0)上是否為有界函數(shù),并說(shuō)明理由;
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.
【答案】(1)見(jiàn)解析;
(2)[﹣,﹣].
【解析】
試題(1)當(dāng)a=﹣1時(shí),函數(shù)表達(dá)式為f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是單調(diào)增函數(shù),它的值域?yàn)椋?/span>﹣∞,1),從而|f(x)|的取值范圍是[0,+∞),因此不存在常數(shù)M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函數(shù).
(2)函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),即﹣3≤f(x)≤3在[1,4]上恒成立,代入函數(shù)表達(dá)式并化簡(jiǎn)整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下來(lái)利用換元法結(jié)合二次函數(shù)在閉區(qū)間上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,實(shí)數(shù)a的取值范圍是[﹣,﹣].
解:(1)當(dāng)a=﹣1時(shí),函數(shù)f(x)=1+x﹣x2=﹣(x﹣)2+
∴f(x)在(﹣∞,0)上是單調(diào)增函數(shù),f(x)<f(0)=1
∴f(x)在(﹣∞,0)上的值域?yàn)椋?/span>﹣∞,1)
因此|f(x)|的取值范圍是[0,+∞)
∴不存在常數(shù)M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函數(shù).
(2)若函數(shù)f(x)在x∈[1,4]上是以3為上界的有界函數(shù),
則|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3
∴﹣3≤ax2+x+1≤3
∴≤a≤,即﹣﹣≤a≤﹣在[1,4]上恒成立,
∴(﹣﹣)max≤a≤(﹣)min,
令t=,則t∈[,1]
設(shè)g(t)=﹣4t2﹣t=﹣4(t+)2+,則當(dāng)t=時(shí),g(t)的最大值為﹣
再設(shè)h(t)=2t2﹣t=2(t﹣)2﹣,則當(dāng)t=時(shí),h(t)的最小值為﹣
∴(﹣﹣)max=﹣,(﹣)min=﹣
所以,實(shí)數(shù)a的取值范圍是[﹣,﹣].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是 ( )
A. “若,則,或”的否定是“若則,或 ”
B. a,b是兩個(gè)命題,如果a是b的充分條件,那么是的必要條件.
C. 命題“,使 得”的否定是:“,均有 ”
D. 命題“ 若,則”的否命題為真命題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn),直線.
(1)求與圓相切,且與直線垂直的直線方程;
(2)在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).
【答案】(1);(2)答案見(jiàn)解析.
【解析】試題分析:
(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為
(2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,則,然后證明為常數(shù)為即可.
方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).
試題解析:
(1)設(shè)所求直線方程為,即,
∵直線與圓相切,∴,得,
∴所求直線方程為
(2)方法1:假設(shè)存在這樣的點(diǎn),
當(dāng)為圓與軸左交點(diǎn)時(shí),;
當(dāng)為圓與軸右交點(diǎn)時(shí),,
依題意,,解得,(舍去),或.
下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù).
設(shè),則,
∴ ,
從而為常數(shù).
方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則,
∴,將代入得,
,即
對(duì)恒成立,
∴,解得或(舍去),
所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).
點(diǎn)睛:求定值問(wèn)題常見(jiàn)的方法有兩種:
(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān).
(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).
(1)當(dāng)時(shí),求的最大值,并推斷方程是否有實(shí)數(shù)解;
(2)若在區(qū)間上的最大值為-3,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓 ,點(diǎn),以線段為直徑的圓內(nèi)切于圓,記點(diǎn)的軌跡為.
(1)求曲線的方程;
(2)直線交圓于,兩點(diǎn),當(dāng)為的中點(diǎn)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn)(點(diǎn)均在第一象限),且直線的斜率成等比數(shù)列,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)的定義域?yàn)?/span>R,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱此函數(shù)為“完美函數(shù)”.
(1)判斷函數(shù)是否為“完美函數(shù)”.若它是“完美函數(shù)”,求出所有的的取值的集合;若它不是,請(qǐng)說(shuō)明理由.
(2)已知函數(shù)是“完美函數(shù)”,且是偶函數(shù).且當(dāng)0時(shí),.求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時(shí), 的取值范圍恰為,則稱函數(shù)是上的“優(yōu)美函數(shù)”.
函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出的值;若不是,請(qǐng)說(shuō)明理由.
若為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.
若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),過(guò)作直線與拋物線相切.
(1)求直線的方程;
(2)如圖,直線∥,與拋物線交于,兩點(diǎn),與直線交于點(diǎn),是否存在常數(shù),使.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com