12.直線x•(2t-1)-y(2t+1)+1=0(t∈R)的傾斜角為α,則α的范圍是(  )
A.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤πB.$\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$C.0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<πD.0≤α<$\frac{π}{4}$

分析 根據(jù)傾斜角、斜率的定義得到tanα=$\frac{{2}^{t}-1}{{2}^{t}+1}$,結(jié)合函數(shù)的性質(zhì)進(jìn)行解答.

解答 解:∵直線x•(2t-1)-y(2t+1)+1=0(t∈R)的傾斜角為α,
∴tanα=$\frac{{2}^{t}-1}{{2}^{t}+1}$=1-$\frac{2}{{2}^{t}+1}$,
∵y=2t+1>1,
∴0<$\frac{2}{{2}^{t}+1}$<2,
∴-1<1-$\frac{2}{{2}^{t}+1}$<1,
∴0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<π.
故選:C.

點(diǎn)評(píng) 本題考查了直線斜率的求法,考查了斜率和傾斜角的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,則向量$\overrightarrow a,\overrightarrow b$夾角的余弦值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax-b(x>0)}\\{0(x=0)}\\{g(x)(x<0)}\end{array}\right.$在區(qū)間(a+$\frac{4}{a}$,-b2+4b)上滿足f(-x)+f(x)=0,則g(-$\sqrt{2}$)的值為( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.四面體ABCD及其三視圖如圖1,2所示.

(1)求四面體ABCD的體積;
(2)若點(diǎn)E為棱BC的中點(diǎn),求異面直線DE和AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過點(diǎn)P($\frac{1}{2}$,1)的直線l與圓C:(x-1)2+y2=4交于A,B兩點(diǎn),當(dāng)∠ACB最小時(shí),三角形ACB的面積為$\frac{\sqrt{55}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=$\frac{1}{2}A{A_1}$=2,點(diǎn)D是棱AA1的中點(diǎn).
(1)證明:平面BDC1⊥平面BDC1;
(2)求三棱錐C1-BDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a=30.4,b=log30.4,c=0.43,則a,b,c的大小關(guān)系為(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≥0}\\{y≥0}\end{array}\right.$,則z=3x+2y+1的最小值為( 。
A.2B.3C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:函數(shù)f(x)=lg(x2+mx+m)的定義域?yàn)镽,命題q:函數(shù)g(x)=x2-2x-1在[m,+∞)上是增函數(shù).
(Ⅰ)若p為真,求m的范圍;
(Ⅱ)若“p∨q”為真命題,“p∧q”為假命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案