如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=20米,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值稱為“規(guī)劃合理度”.
(1)試用θ表示S1和S2
(2)當(dāng)θ變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角θ的大。
【答案】分析:(1)據(jù)題知三角形ABC為直角三角形,根據(jù)三角函數(shù)分別求出AC和AB,求出三角形ABC的面積S1;設(shè)正方形PQRS的邊長(zhǎng)為x,利用三角函數(shù)分別表示出BQ和RC,利用BQ+QR+RC=20列出方程求出x,算出S2;
(2)由比值稱為“規(guī)劃合理度”,可設(shè)t=sin2θ來(lái)化簡(jiǎn)求出S1與S2的比值,利用三角函數(shù)的增減性求出比值的最小值即可求出此時(shí)的θ.
解答:解:(1)如圖,在Rt△ABC中,AC=20sinθ,AB=20cosθ,
=100sin2θ,
設(shè)正方形的邊長(zhǎng)為x則,

=,;
(2)t=sin2θ而S2=,
∵0<θ<,又0<2θ<π,∴0<t≤1∴為減函數(shù)
當(dāng)t=1時(shí)取得最小值為此時(shí)
點(diǎn)評(píng):考查學(xué)生會(huì)根據(jù)實(shí)際問(wèn)題選擇合適的函數(shù)關(guān)系的能力,以及在實(shí)際問(wèn)題中建立三角函數(shù)模型的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=20米,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用θ表示S1和S2
(2)當(dāng)θ變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC的內(nèi)接正方形PQRS為一水池,△ABC外的地方種草,其余地方種花.若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2
(2)若a為定值,當(dāng)θ為何值時(shí),“規(guī)劃合理度”最小?并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,點(diǎn)C在半圓弧上,半圓內(nèi)△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS內(nèi)部為一水池,其余地方種花,若AB=2a,∠CAB=θ,設(shè)△ABC的面積為S1,正方形PQRS的邊長(zhǎng)為x,面積為S2,將比值
S1
S2
稱為“規(guī)劃合理度”.
(1)求證:x=
2asin2θ
2+sin2θ

(2)當(dāng)a為定值,θ變化是,求“規(guī)劃合理度”的最小值及此時(shí)角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為AB的半圓形空地,O為圓心,C為圓周上一點(diǎn),CD⊥AB于D,△ACD內(nèi)為一水池,△ACD外栽種花草,若AB=100米,∠CAB=θ,y=AC+CD.
(1)試用θ表示y;
(2)求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•楊浦區(qū)二模)如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內(nèi)接正方形PQRS為一水池,其余地方種花.若BC=a,∠ABC=θ,設(shè)△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2
(2)(理)當(dāng)a為定值,θ變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角θ的大。
(3)(文)當(dāng)a為定值,θ=150時(shí),求“規(guī)劃合理度”的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案