已知w滿足w2+1=0,則w2005=
 
考點:復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和周期性即可得出.
解答: 解:∵w滿足w2+1=0,∴w2=-1,∴w=±i.
∴w4=1.
則w2005=(w4501•w=w=±i.
故答案為:±i.
點評:本題考查了復(fù)數(shù)的運(yùn)算法則和周期性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xe -
x
a
(其中a∈R,a≠0,e=2.718…為自然對數(shù)的底數(shù)).
(1)求f(x)在[0,1]上的最大值;
(2)設(shè)函數(shù)g(x)=kx2+(k-15)x-15(k>1,k∈N+),函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若當(dāng)x>0時,2f′(-ax)>g(x)恒成立,求最大的正整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
5
3
,F(xiàn)1、F2分別是橢圓C的左、右焦點,點P(
3
2
,m)是橢圓上一點,且
PF1
PF2
=
1
4

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(2,0)的直線交橢圓C于A、B兩點,O是坐標(biāo)原點,設(shè)
OM
=
OA
+
OB
,且|
OM
|=|
AB
|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點A(-3,9)出發(fā),經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+2ax+1,當(dāng)0≤x≤2時該函數(shù)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一條直線的投影與另一條直線垂直,那么這兩條直線垂直.
 
.(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB和CD互相垂直平分于點O,|
AB
|=2|
CD
|=4,動點P滿足|
PA
|•|
PB
|=|
PC
|•|
PD
|,若以O(shè)為原點,CD所在的直線為x軸,則動點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的程序框圖,則輸出的S值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+2x-3=0的圓心到直線3x+4y-2=0的距離為
 

查看答案和解析>>

同步練習(xí)冊答案