(本小題滿分12分)
已知函數(shù)。
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求的取值范圍。
解:(Ⅰ)當時,單調(diào)遞減,
單調(diào)遞增。
時,單調(diào)遞增。
(Ⅱ)。

試題分析: (1)因為,然后分母為正,然后確定分子的正負來得到單調(diào)區(qū)間。
(2)要證明,得到
構(gòu)造函數(shù),求解最大值即可。
解:(Ⅰ)
時,單調(diào)遞減,
單調(diào)遞增。
時,單調(diào)遞增。
(Ⅱ),得到
令已知函數(shù)

單調(diào)遞減,單調(diào)遞增。
,即,
單調(diào)遞減,
,,若恒成立,則。
點評:解決該試題的關(guān)鍵是能準確的利用參數(shù)的取值范圍得到函數(shù)的單調(diào)性的運用,并且可知函數(shù)的最值問題,進而證明不等式的恒成立。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
定義在上的偶函數(shù),已知當時的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,且,則的最大值為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)偶函數(shù)上是增函數(shù),則
大小關(guān)系是(    )
A.B.
C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)函數(shù),若不等式對任意
恒成立,則實數(shù)的取值范圍為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡:;
(2)畫出函數(shù)上的圖像;
(3)證明:上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)上的最大值為4,最小值為,
且函數(shù)在R上是增函數(shù),則=        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)求的值;
(3)若對于區(qū)間[3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是奇函數(shù),則<0的取值范圍是( )
A.(-1,0)B.(0,1)
C.(-∞,0)D.(-∞, 0)∪(1,+∞)

查看答案和解析>>

同步練習冊答案