已知三次函數(shù),為實常數(shù)。
(1)若時,求函數(shù)的極大、極小值;
(2)設(shè)函數(shù),其中的導函數(shù),若的導函數(shù)為,,軸有且僅有一個公共點,求的最小值.

(1),;(2)2.

解析試題分析:(1)當時,得到,求其導函數(shù),列表得到函數(shù)的單調(diào)區(qū)間,進而可得函數(shù)的極值;(2)由函數(shù)求導,得到,,再由軸有且僅有一個公共點,得到,利用基本不等式,即可得到的最小值.
試題解析:(1)
,,















極大值

極小值

,
(2)
,

法一:,


時,
時,,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)f(x)=x3ax2axg(x)=2x2+4xc.
(1)試問函數(shù)f(x)能否在x=-1時取得極值?說明理由;
(2)若a=-1,當x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x-aln x(a∈R).
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在R上的函數(shù)同時滿足以下條件:
在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
是偶函數(shù);
在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)的解析式;
(2)設(shè)g(x)=,若存在實數(shù)x∈[1,e],使g(x)<,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax+ln x,其中a為常數(shù),e為自然對數(shù)的底數(shù).
(1)當a=-1時,求f(x)的最大值;
(2)當a=-1時,試推斷方程|f(x)|=是否有實數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),, 
(1)若,求曲線處的切線方程;
(2)若對任意的,都有恒成立,求的最小值;
(3)設(shè),,若,為曲線的兩個不同點,滿足,且,使得曲線處的切線與直線AB平行,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)xaln x(a為常數(shù)).
(1)當a=-1時,求曲線yf(x)在x=1處切線的方程;
(2)當a>0時,討論函數(shù)yf(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ln x+2x-6.
(1)證明:函數(shù)f(x)有且只有一個零點;
(2)求該零點所在的一個區(qū)間,使這個區(qū)間的長度不超過

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對于任意,總存在, 使得, 求實數(shù) 的取值范圍.

查看答案和解析>>

同步練習冊答案