已知△ABC的外接圓圓心為O,BC>CA>AB.則(  )
A、
OA
OB
OA
OC
OB
OC
B、
OA
OB
OB
OC
OC
OA
C、
OC
OB
OA
OC
OB
OA
D、
OA
OC
OB
OC
OA
OB
分析:利用△ABC的大邊對(duì)大角得到,∠A>∠B>∠C,進(jìn)而有cosA<cosB<cosC,cos2A<cos2B<cosC,用外接圓的半徑和三角形的內(nèi)角表示2個(gè)向量的數(shù)量積,即可得到答案.
解答:解:∵△ABC的外接圓的圓心O,BC>CA>AB,∠A>∠B>∠C,設(shè)△ABC的外接圓的半徑為R,
∴cosA<cosB<cosC,
OA
OB
=OA×OB×cos2C=R2cos2C,
OA
OC
=R2cos2B,
OB
OC
=R2cos2A,由上知,cos2A<cos2B<cosC,
OA
OB
OA
OC
OB
OC

故選A
點(diǎn)評(píng):本題考查三角形的大邊對(duì)大角,余弦值的單調(diào)性,及向量的數(shù)量積的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的外接圓的圓心O,BC>CA>AB,則
OA
OB
,
OA
OC
OB
OC
的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的外接圓的半徑為
2
,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,又向量
m
=(sinA-sinC,b-a)
,
n
=(sinA+sinC,
2
4
sinB)
,且
m
n

(I)求角C;
(II)求三角形ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的外接圓半徑R為6,面積為S,a、b、c分別是角A、B、C的對(duì)邊設(shè)S=a2-(b-c)2,sinB+sinC=
43

(I)求sinA的值;
(II)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的外接圓半徑為1,角A,B,C的對(duì)邊分別為a,b,c.向量
m
=(a,4cosB)
,
n
=(cosA,b)
滿足
m
n

(1)求sinA+sinB的取值范圍;
(2)若A∈(0,
π
3
)
,且實(shí)數(shù)x滿足abx=a-b,試確定x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案