已知函數(shù)(常數(shù)).

(Ⅰ)求的單調(diào)區(qū)間;(5分)

(Ⅱ)設(shè)如果對于的圖象上兩點(diǎn),存在,使得的圖象在處的切線,求證:.(7分)

 

【答案】

(I)的定義域為

-----(1分)

時,的增區(qū)間為,減區(qū)間為

時,的增區(qū)間為,減區(qū)間為

時,減區(qū)間為

時,的增區(qū)間為,減區(qū)間為

(II)見解析

【解析】(1)先確定函數(shù)f(x)的定義域,然后求導(dǎo),由于含參數(shù)a,所以要對a進(jìn)行討論確定導(dǎo)數(shù)是大于零還是小于零,進(jìn)而求得單調(diào)區(qū)間.

(2)由題意

又因為,

因為)在上為減函數(shù)

所以問題轉(zhuǎn)化為要證,只要證

,即證.

然后,利用導(dǎo)數(shù)求g(t)的最小值即可

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)是常數(shù),且,滿足,且有唯一解,求的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高一上學(xué)期教學(xué)質(zhì)量自查數(shù)學(xué)試卷A 題型:解答題

(本小題滿分14分)
已知函數(shù)(為常數(shù)).
(1)  若1為函數(shù)的零點(diǎn), 求的值;
(2)  在(1)的條件下且, 求的值;
(3)  若函數(shù)在[0,2]上的最大值為3, 求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省株洲市攸縣二中高三數(shù)學(xué)試卷08(文科)(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省天水市高三第五次檢測理科數(shù)學(xué) 題型:解答題

(本題滿分12分)

已知函數(shù)為常數(shù)),且方程有兩實(shí)根3和4 

(1)求函數(shù)的解析式;  (2)設(shè),解關(guān)于的不等式:

 

查看答案和解析>>

同步練習(xí)冊答案