(2013•資陽(yáng)一模)在數(shù)列{an}中,如果對(duì)任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題:
①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等比數(shù)列一定是比等差數(shù)列,等差數(shù)列不一定是比等差數(shù)列;
④若{an}是等差數(shù)列,{bn}是等比數(shù)列,則數(shù)列{anbn}是比等差數(shù)列.
其中所有真命題的序號(hào)是
①③
①③
分析:根據(jù)比等差數(shù)列的定義
an+2
an+1
-
an+1
an
(λ為常數(shù)),逐一判斷①~④中的四個(gè)數(shù)列是否是比等差數(shù)列,即可得到答案.
解答:解:數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)3=2,F(xiàn)4=3,F(xiàn)5=5,
F3
F2
-
F2
F1
=1,
F4
F3
-
F3
F2
=-
1
2
≠1,則該數(shù)列不是比等差數(shù)列,
故①正確;
若數(shù)列{an}滿足an=(n-1)•2n-1,則
an+2
an+1
-
an+1
an
=
(n+1)•2n+1
n•2n
-
n•2n
(n-1)•2n-1
=
-2
(n-1)•n
不為定值,即數(shù)列{an}不是比等差數(shù)列,
故②錯(cuò)誤;
等比數(shù)列
an+2
an+1
-
an+1
an
=0,滿足比等差數(shù)列的定義,若等差數(shù)列為an=n,則
an+2
an+1
-
an+1
an
=
-1
(n-1)•n
不為定值,即數(shù)列{an}不是比等差數(shù)列,
故③正確;
如果{an}是等差數(shù)列,{bn}是等比數(shù)列,設(shè)an=n,bn=2n,則
an+2
an+1
-
an+1
an
=不為定值,不滿足比等差數(shù)列的定義,
故④不正確;
故答案為:①③
點(diǎn)評(píng):本題考查新定義,解題時(shí)應(yīng)正確理解新定義,同時(shí)注意利用列舉法判斷命題為假,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•資陽(yáng)一模)命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0(其中a>0);命題q:實(shí)數(shù)x滿足
|x-1|≤2
x+3
x-2
≥0.

(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若?p是?q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•資陽(yáng)一模)若a>b>0,則下列不等式一定不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•資陽(yáng)一模)計(jì)算:(
1
8
)-
2
3
+(log29)•(log34)
=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•資陽(yáng)一模)函數(shù)f(x)=
x
x
-1
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•資陽(yáng)一模)已知集合A={x|-2<x<2},集合B={x|1<x<3},則A∩B=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案