已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是準(zhǔn)線上一點(diǎn),且PF1⊥PF2,|PF1|•|PF2|=4ab,則雙曲線的離心率是( 。
A、
2
B、
3
C、2
D、3
分析:由PF1⊥PF2,|PF1|•|PF2|=4ab可知:PF1|•|PF2|=|F1F2|•|PA|,導(dǎo)出|PA|=
4ab
2c
=
2ab
c
,由此能夠求出雙曲線的離心率.
解答:解:設(shè)準(zhǔn)線與x軸交于A點(diǎn).在Rt△PF1F2中,
∵|PF1|•|PF2|=|F1F2|•|PA|,
|PA|=
4ab
2c
=
2ab
c
,
又∵|PA|2=|F1A|•|F2A|,
4a2b2
c2
=(c-
a2
c
)(c+
a2
c
)
,
化簡得c2=3a2,
e=
3

故選答案B
點(diǎn)評(píng):本題考查雙曲線的離心率的求法解三角形的相關(guān)知識(shí).解題時(shí)不能聯(lián)系三角形的有關(guān)知識(shí),找不到解題方法而亂選.雙曲線的離心率的求法是解析幾何的一個(gè)重點(diǎn),且方法較多,要善于總結(jié)各種方法,靈活應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請(qǐng)求出該定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(diǎn)
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案