已知函數(shù)f(x)=,把函數(shù)g(x)=f(x)-x的零點按從小到大的順序排列成一個數(shù)列,則該數(shù)列的通項公式為( )
A.
B.a(chǎn)n=n-1
C.a(chǎn)n=n(n-1)
D.
【答案】分析:根據(jù)函數(shù)的零點的定義,構造兩函數(shù)圖象的交點,交點的橫坐標即為函數(shù)的零點,再通過數(shù)列及通項公式的概念得所求的解.
解答:解:當x∈(-∞,0]時,由g(x)=f(x)-x=2x-1-x=0,得2x=x+1.令y=2x,y=x+1.在同一個坐標系內(nèi)作出兩函數(shù)在區(qū)間(-∞,0]上的圖象,由圖象易知交點為(0,1),故得到函數(shù)的零點為x=0.
當x∈(0,1]時,x-1∈(-1,0],f(x)=f(x-1)+1=2x-1-1+1=2x-1,由g(x)=f(x)-x=2x-1-x=0,得2x-1=x.令y=2x-1,y=x.在同一個坐標系內(nèi)作出兩函數(shù)在區(qū)間(0,1]上的圖象,由圖象易知交點為(1,1),故得到函數(shù)的零點為x=1.
當x∈(1,2]時,x-1∈(0,1],f(x)=f(x-1)+1=2x-1-1+1=2x-2+1,由g(x)=f(x)-x=2x-2+1-x=0,得2x-2=x-1.令y=2x-2,y=x-1.在同一個坐標系內(nèi)作出兩函數(shù)在區(qū)間(1,2]上的圖象,由圖象易知交點為(2,1),故得到函數(shù)的零點為x=2.
依此類推,當x∈(2,3],x∈(3,4],…,x∈(n,n+1]時,構造的兩函數(shù)圖象的交點依次為(3,1),(4,1),…,(n+1,1),得對應的零點分別為x=3,x=4,…,x=n+1.
故所有的零點從小到大依次排列為0,1,2,…,n+1.其對應的數(shù)列的通項公式為an=n-1.
故選B.
點評:本題主要考查了函數(shù)零點的概念及零點的求法、數(shù)列的概念及簡單表示;培養(yǎng)學生觀察、分析、歸納、推理的能力;解題中使用了數(shù)形結合及分類討論的數(shù)學方法和數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�