(2012•楊浦區(qū)一模)若直線l:ax+by=1與圓C:x2+y2=1相切,則a2+b2=
1
1
分析:由圓C的方程找出圓心C的坐標與半徑r,根據(jù)直線l與圓C相切,得到圓心到直線l的距離等于圓的半徑,故利用點到直線的距離公式列出關(guān)系式,變形后即可求出所求式子的值.
解答:解:由圓C:x2+y2=1,得到圓心C(0,0),半徑r=1,
∵直線l與圓C相切,
∴圓心C到直線l的距離d=r,即
1
a2+b2
=1,
則a2+b2=1.
故答案為:1
點評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓的標準方程,以及點到直線的距離公式,直線與圓的位置關(guān)系由d與r的大小來判斷,當(dāng)d>r時,直線與圓相離;當(dāng)d=r時,直線與圓相切;當(dāng)d<r時,直線與圓相交.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)已知f(x)是R上的偶函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(0,2)時,f(x)=2x2,則f(7)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)設(shè)函數(shù)f(x)=log2(2x+1)的反函數(shù)為y=f-1(x),若關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,則實數(shù)m的取值范圍是
[log2
1
3
,log2
3
5
]
[log2
1
3
,log2
3
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)若直線l:ax+by=1與圓C:x2+y2=1有兩個不同的交點,則點P(a,b)與圓C的位置關(guān)系是
P在圓外
P在圓外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)若函數(shù)y=f(x),如果存在給定的實數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱y=f(x)為“Ω函數(shù)”.
(1)判斷下列函數(shù),是否為“Ω函數(shù)”,并說明理由;
①f(x)=x3         ②f(x)=2x
(2)已知函數(shù)f(x)=tanx是一個“Ω函數(shù)”,求出所有的有序?qū)崝?shù)對(a,b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)計算:
lim
n→∞
(1-
2n
n+3
)
=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案