【題目】已知函數(shù) . (I)當(dāng)a=1時,求f(x)在x∈[1,+∞)最小值;
(Ⅱ)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(Ⅲ)求證: (n∈N*).

【答案】解:(I) ,定義域為(0,+∞). ∵ ,
∴f(x)在(0,+∞)上是增函數(shù).
當(dāng)x≥1時,f(x)≥f(1)=1;
(Ⅱ)∵ ,
∵若f(x)存在單調(diào)遞減區(qū)間,
∴f′(x)<0有正數(shù)解.即ax2+2(a﹣1)x+a<0有x>0的解.
①當(dāng)a=0時,明顯成立.
②當(dāng)a<0時,y=ax2+2(a﹣1)x+a為開口向下的拋物線,ax2+2(a﹣1)x+a<0總有x>0的解;
③當(dāng)a>0時,y=ax2+2(a﹣1)x+a開口向上的拋物線,
即方程ax2+2(a﹣1)x+a=0有正根.
因為x1x2=1>0,
所以方程ax2+2(a﹣1)x+a=0有兩正根.
,解得
綜合①②③知:
(Ⅲ)(法一)根據(jù)(Ⅰ)的結(jié)論,當(dāng)x>1時, ,即
,則有 ,



(法二)當(dāng)n=1時,ln(n+1)=ln2.
∵3ln2=ln8>1,∴ ,即n=1時命題成立.
設(shè)當(dāng)n=k時,命題成立,即
∴n=k+1時,
根據(jù)(Ⅰ)的結(jié)論,當(dāng)x>1時, ,即
,則有 ,
則有 ,即n=k+1時命題也成立.
因此,由數(shù)學(xué)歸納法可知不等式成立
【解析】(I)可先求f′(x),從而判斷f(x)在x∈[1,+∞)上的單調(diào)性,利用其單調(diào)性求f(x)在x∈[1,+∞)最小值;(Ⅱ)求h′(x),可得 ,若f(x)存在單調(diào)遞減區(qū)間,需h′(x)<0有正數(shù)解.從而轉(zhuǎn)化為:ax2+2(a﹣1)x+a<0有x>0的解.通過對a分 a=0,a<0與當(dāng)a>0三種情況討論解得a的取值范圍;
(Ⅲ)(法一)根據(jù)(Ⅰ)的結(jié)論,當(dāng)x>1時, ,再構(gòu)造函數(shù),令 ,有 ,從而 ,問題可解決;(法二)可用數(shù)學(xué)歸納法予以證明.當(dāng)n=1時,ln(n+1)=ln2,3ln2=ln8>1 ,成立;設(shè)當(dāng)n=k時, ,再去證明n=k+1時, 即可(需用好歸納假設(shè)).
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減,以及對函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在R上是增函數(shù),則下列說法正確的是( )
A.y=﹣f(x)在R上是減函數(shù)
B.y= 在R上是減函數(shù)
C.y=[f(x)]2在R上是增函數(shù)
D.y=af(x)(a為實數(shù))在R上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,(2x1﹣x2)(x1﹣2x2)=﹣ 成立?若存在,求出k的值;若不存在,請說明理由.
(2)求使 + ﹣2的值為整數(shù)的實數(shù)k的整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣2tx+2,g(x)=ex﹣1+e﹣x+1 , 且函數(shù)f(x)的圖象關(guān)于直線x=1對稱.
(1)求函數(shù)f(x)在區(qū)間[0,4]上最大值;
(2)設(shè) ,不等式h(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;
(3)設(shè)F(x)=f(x)+ag(x)﹣2有唯一零點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式:
(1)9x+3x<6(3x﹣1);
(2)log (2x+1) (x2﹣2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= + 的定義域為( )
A.[﹣1,2)∪(2,+∞)
B.[﹣1,+∞)
C.(﹣∞,2)∪(2,+∞)
D.(﹣1,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為: = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ax﹣1(e為自然對數(shù)的底數(shù)). (Ⅰ)當(dāng)a=1時,求過點(1,f(1))處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若f(x)≥x2在(0,1)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一艘船在航行過程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時,拱橋最高點距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求正常水位時圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m,

查看答案和解析>>

同步練習(xí)冊答案