【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則它的體積為(
A.48
B.16
C.32
D.16

【答案】B
【解析】解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O﹣ABCD, 正方體的棱長(zhǎng)為4,O、A、D分別為棱的中點(diǎn),
∴OD=2 ,AB=DC=OC=2 ,
做OE⊥CD,垂足是E,
∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,則四邊形ABCD是矩形,
∵CD∩BC=C,∴OE⊥平面ABCD,
∵△ODC的面積S= =6,
∴6= = ,得OE= ,
∴此四棱錐O﹣ABCD的體積V= = =16,
故選:B.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用由三視圖求面積、體積,掌握求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的離心率為 ,直線l:x+y﹣1=0與C相交于A,B兩點(diǎn).
(1)證明:線段AB的中點(diǎn)為定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(2)設(shè)M(1,0), ,當(dāng) 時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓C1 + =1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過(guò)F作直線l交拋物線C2于A,B兩點(diǎn),過(guò)F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,則f(f(3))= , f(x)的單調(diào)減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),則a+2b的取值范圍為(
A.
B.
C.(6,+∞)
D.[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C在直角坐標(biāo)系xOy下的參數(shù)方程為 (θ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是ρcos(θ﹣ )=3 ,射線OT:θ= (ρ>0)與曲線C交于A點(diǎn),與直線l交于B,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)共享單車在我國(guó)主要城市發(fā)展迅速.目前市場(chǎng)上有多種類型的共享單車,有關(guān)部門(mén)對(duì)其中三種共享單車方式(M方式、Y方式、F方式)進(jìn)行統(tǒng)計(jì)(統(tǒng)計(jì)對(duì)象年齡在15~55歲),相關(guān)數(shù)據(jù)如表1,表2所示. 三種共享單車方式人群年齡比例(表1)

方式
年齡分組

M
方式

Y
方式

F
方式

[15,25)

25%

20%

35%

[25,35)

50%

55%

25%

[35,45)

20%

20%

20%

[45,55]

5%

a%

20%

不同性別選擇共享單車種類情況統(tǒng)計(jì)(表2)

性別
使用單車
種類數(shù)(種)

1

20%

50%

2

35%

40%

3

45%

10%

(Ⅰ)根據(jù)表1估算出使用Y共享單車方式人群的平均年齡;
(Ⅱ)若從統(tǒng)計(jì)對(duì)象中隨機(jī)選取男女各一人,試估計(jì)男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;
(Ⅲ)現(xiàn)有一個(gè)年齡在25~35歲之間的共享單車用戶,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,試問(wèn)此結(jié)論是否正確?(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲廠根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的關(guān)系:廠里的固定成本為2.8萬(wàn)元,每生產(chǎn)1百臺(tái)的生產(chǎn)成本為1萬(wàn)元,每生產(chǎn)產(chǎn)品x(百臺(tái)),其總成本為G(x)(萬(wàn)元)(總成本=固定成本+生產(chǎn)成本).如果銷售收入R(x)= ,且該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣(mài)掉),請(qǐng)完成下列問(wèn)題:
(1)寫(xiě)出利潤(rùn)函數(shù)y=f(x)的解析式(利潤(rùn)=銷售收入﹣總成本);
(2)甲廠生產(chǎn)多少臺(tái)新產(chǎn)品時(shí),可使盈利最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案