數(shù)列{}中,,則為_(kāi)__________.
19

試題分析:由已知可得,所以,。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的兩個(gè)同心圓盤(pán)均被等分(),在相重疊的扇形格中依次同時(shí)填上,內(nèi)圓盤(pán)可繞圓心旋轉(zhuǎn),每次可旋轉(zhuǎn)一個(gè)扇形格,當(dāng)內(nèi)圓盤(pán)旋轉(zhuǎn)到某一位置時(shí),定義所有重疊扇形格中兩數(shù)之積的和為此位置的“旋轉(zhuǎn)和”.
(1)求個(gè)不同位置的“旋轉(zhuǎn)和”的和;
(2)當(dāng)為偶數(shù)時(shí),求個(gè)不同位置的“旋轉(zhuǎn)和”的最小值;
(3)設(shè),在如圖所示的初始位置將任意對(duì)重疊的扇形格中的兩數(shù)均改寫(xiě)為0,證明:當(dāng)時(shí),通過(guò)旋轉(zhuǎn),總存在一個(gè)位置,任意重疊的扇形格中兩數(shù)不同時(shí)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)(1,
1
3
)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿(mǎn)足Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式
(Ⅱ)求數(shù)列{
1
bnbn+1
}前n項(xiàng)和為T(mén)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的前n項(xiàng)和為,那么該數(shù)列的通項(xiàng)公式為=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列為等差數(shù)列,且,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若,為數(shù)列的前項(xiàng)和,對(duì)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列1,1,2,3,5,8,,21,34,55,…中,等于(  )
A.11B.12C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀察下列等式
12=1
12-22=-3
12-22+32=6
12-22+32-42=-10
……
照此規(guī)律,第n個(gè)等式可為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),且,則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列1,1,2,3,5,8,x,21,34,55中,x等于(  )
A.11B.12C.13D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案