設(shè)全集為R,A={x|1≤x<3},B={x|3x-7≥8-2x},C={x|2<x<10}.
(1)求A∩B,B∪C;
(2)(∁RA)∩B.
考點:交、并、補集的混合運算
專題:集合
分析:先解出集合B,根據(jù)結(jié)合的運算解答即可.
解答: 解:(1)∵A={x|1≤x<3},B={x|x≥3},C={x|2<x<10},
∴A∩B=∅,B∪C={x|x>2};
(2)∵全集為R,A={x|1≤x<3},B={x|x≥3},
∴(∁RA)∩B={x|x<1或x≥3}∩{x|x≥3}={x|x≥3}.
故答案為:(1)A∩B=∅,B∪C={x|x>2};(2)(∁RA)∩B={x|x≥3}.
點評:本題考查集合的交、并、補集的混合運算,是基礎(chǔ)題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x0∈R,2x0≤0”的否定是( 。
A、?x0∈R,2x0>0
B、?x0∉R,2x0≤0
C、?x∈R,2x>0
D、?x∈R,2x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項數(shù)列{an}滿足a1=a(0<a<1),且an+1=
an
1+an
(n∈N*
(1)求a2,a3,a4;
(2)求證:數(shù)列{
1
an
}為等差數(shù)列;
(3)求證:
a1
2
+
a2
3
+…+
an
n+1
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知集合A={x|-1<x<3},集合B={y|y=
1
x
,x∈(-3,0)∪(0,1)},集合C={x|2x2+mx-8<0}.
(1)求A∩B、A∪(∁RB)(R為全集);
(2)若(A∩B)⊆C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)如圖,在棱長為4的正方體ABCD-A1B1C1D1中,P、Q分別是棱A1D1和AD的中點,R為PB的中點.
(Ⅰ)求證:QR∥平面PCD;
(Ⅱ)求直線BQ與平面CQR所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)計算:lg2+lg5+(
1
2
-2+
(π-2)2
;
(Ⅱ)已知
sinθ+cosθ
2sinθ-cosθ
=3,求tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)解析式為f(x)=
2
x
-1,
(Ⅰ)求f(-1)的值;  
(Ⅱ)求當(dāng)x<0時,函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(x2+ax-a+1),其中a是常數(shù).
(Ⅰ)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)在定義域內(nèi)是單調(diào)遞增函數(shù),求a的取值范圍;
(Ⅲ)若關(guān)于x的方程f(x)=ex+k在[0,+∞)上有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,b>0,且a+b=1.求證:
(Ⅰ)ab≤
1
4

(Ⅱ)
1
a+1
+
1
b+1
4
3

查看答案和解析>>

同步練習(xí)冊答案