在正三棱錐S-ABC中,M、N分別是棱SC、BC的中點,且MN⊥AM.若側棱,則正三棱錐S-ABC外接球的表面積是
( )
A.12π
B.32π
C.36π
D.48π
【答案】分析:由題意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的表面積.
解答:解:∵三棱錐S-ABC正棱錐,∴SB⊥AC(對棱互相垂直)∴MN⊥AC
又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球
∴2R=2,∴R=3,∴S=4πR2=4π•(3)2=36π,
故選C.
點評:本題是基礎題,考查三棱錐的外接球的表面積,考查空間想象能力,三棱錐擴展為正方體,它的對角線長就是外接球的直徑,是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正三棱錐S-ABC中,M、N分別為棱SC、BC的中點,并且AM⊥MN,若側棱長SA=
3
,則正三棱錐S-ABC的外接球的表面積為(  )
A、9πB、12π
C、16πD、32π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐S-ABC中,若SA=4,BC=3,分別取SA、BC的中點E、F,則EF=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐S-ABC中,D是AB的中點,且SD與BC成45°角,則SD與底面ABC所成角的正弦為( 。
A、
2
2
B、
1
3
C、
3
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)在正三棱錐S-ABC中,M為棱SC上異于端點的點,且SB⊥AM,若側棱SA=
3
,則正三棱錐S-ABC的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正三棱錐S-ABC中,側棱SC⊥側面SAB,側棱SC=2
3
,則此正三棱錐的外接球的表面積為
36π
36π

查看答案和解析>>

同步練習冊答案