已知函數(shù)f(x)定義在區(qū)間(-1,1)上,,對(duì)任意x、y∈(-1,1),恒有成立,又?jǐn)?shù)列an滿足,
設(shè)
(1)在(-1,1)內(nèi)求一個(gè)實(shí)數(shù)t,使得;
(2)證明數(shù)列f(an)是等比數(shù)列,并求f(an)的表達(dá)式和的值;
(3)設(shè),是否存在m∈N+,使得對(duì)任意n∈N+ 恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)令x=y=可得,=-2,從而可求t
(2)由可令x=y=an可得,從而可證,結(jié)合等比數(shù)列的通項(xiàng)公式可求f(an);利用等比數(shù)列的求和公式可求
(3)用等比數(shù)列的求和公式可求,代入可求,由cn 是遞減數(shù)列,可得,只須,解不等式可求m的最小正數(shù)值
解答:解:(1)令x=y=可得,=-2
=-2∴t=
(2)∵
令x=y=an可得,
∴數(shù)列{f(an)}是以-1為首項(xiàng),以2為公比的等比數(shù)列
∴f(an)=-2n-1
=-(
==

(3)由(2)得,=-(
,∴cn 是遞減數(shù)列,
,只須,
即4log22m-12log2m-7>0,
解可得,
≈0.71或,m≈11.31
∴當(dāng)m≥12,且m∈N* 時(shí),7cn<6log22m-18log2m 對(duì)任意n∈N* 恒成立,
∴m 的最小正整數(shù)值為12.
點(diǎn)評(píng):本題主要考查了借、借助抽象函數(shù)的關(guān)系求解數(shù)列的項(xiàng)及通項(xiàng)公式,解題的關(guān)鍵是要根據(jù)函數(shù)關(guān)系合理的賦值,還考查了等比數(shù)列的通項(xiàng)公式及求和公式及數(shù)列單調(diào)性求數(shù)列最值的應(yīng)用,綜合的知識(shí)較多.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在(-1,1)上,對(duì)于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當(dāng)x<0時(shí),f(x)>0.
(Ⅰ)驗(yàn)證函數(shù)f(x)=ln
1-x
1+x
是否滿足這些條件;
(Ⅱ)判斷這樣的函數(shù)是否具有奇偶性和其單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在R上,并且對(duì)于任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時(shí),f(x)≠f(y),x>0時(shí),有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關(guān)于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•連云港二模)已知函數(shù)f(x)定義在正整數(shù)集上,且對(duì)于任意的正整數(shù)x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,則f(2009)=
4018
4018

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時(shí),恒有f(x)-f(y)=f(
x-y
1-xy
),又?jǐn)?shù)列{an}滿足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)證明:f(x)在(-1,1)上為奇函數(shù);
(II)求f(an)關(guān)于n的函數(shù)解析式;
(III)令g(n)=f(an)且數(shù)列{an}滿足bn=
1
g(n)
,若對(duì)于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義在R上,對(duì)任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,則f(2013)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案