精英家教網(wǎng)如圖,在⊙O中,AB為直徑,AD為弦,過B點(diǎn)的切線與AD的延長線交于點(diǎn)C,且AD=DC,則sin∠ACO=
 
分析:根據(jù)切線的性質(zhì),我們易判斷△ABC為Rt△,結(jié)合圓周角定理的推論2及AD=DC,及得△ABC為等腰直角三角形,則∠BCA=45°,設(shè)圓的半徑為1,則我們易求出∠OCB的三角函數(shù)值,代入兩角差的正弦公式,即可求出答案.
解答:解:∵AB為直徑,BC為圓的切線
且AD=DC
∴△ABC為等腰直角三角形,
設(shè)圓的半徑為1,則OB=1,BC=2,0C=
5

∴sin∠BC0=
5
5
,cos∠BC0=
2
5
5

∴sin∠ACO=sin(45°-∠BCO)=
10
10

故答案為:
10
10
點(diǎn)評:本題考查的知識點(diǎn)是圓的切線的性質(zhì)定理,圓周角定理,其中根據(jù)已知判斷出△ABC的形狀,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30度.
(1)判斷直線CD是否是⊙O的切線,并說明理由;
(2)若CD=3
3
,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、如圖,在⊙O中,AB是弦,AC是⊙O切線,過B點(diǎn)作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠ABD的度數(shù)是
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•惠州模擬)如圖,在⊙O中,AB為直徑,AD為弦,過B點(diǎn)的切線與AD的延長線交于點(diǎn)C,且AD=DC,則sin∠BCO=
5
5
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過 B作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分
∠BAD,則∠BAD=(  )

查看答案和解析>>

同步練習(xí)冊答案