(    )

A.等腰三角形               B.直角三角形  

C. 等腰三角形或直角三角形  D. 等腰直角三角形

 

【答案】

C

【解析】因為在

等腰三角形或直角三角形,選C

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:已知橢圓A,B,C是長軸長為4的橢圓上三點,點A是長軸的一個端點,BC過橢圓的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求橢圓的標準方程;
(Ⅱ)如果橢圓上兩點P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實數(shù)λ使
PQ
AB
?請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC是等腰直角三角形,AB=AC=a,AD是斜邊BC上的高,以AD為折痕使∠BDC成直角.在折起后形成的三棱錐A-BCD中,有如下三個結(jié)論:①直線AD⊥平面BCD;②側(cè)面ABC是等邊三角形;③三棱錐A-BCD的體積是
2
24
a3
.其中正確結(jié)論的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 北師大課標高二版(必修5) 2009-2010學年 第13期 總第169期 北師大課標版(必修5) 題型:013

在△ABC中,若2cosBsinAsinC,則△ABC的形狀是

[  ]
A.

等腰三解形

B.

直角三角形

C.

等腰直角三角形

D.

等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面上有三點A,B,C,設(shè)m=+,n=-,若m,n的長度恰好相等,則有(    )

A.A,B,C三點必在同一直線上

B.△ABC必為等腰三角形且∠B為頂角

C.△ABC必為直角三角形且∠B=90°

D.△ABC必為等腰直角三角形

查看答案和解析>>

同步練習冊答案