【題目】設(shè)函數(shù),則下列命題中正確的個(gè)數(shù)是( )

當(dāng)時(shí),函數(shù)上是單調(diào)增函數(shù);

當(dāng)時(shí),函數(shù)上有最小值;

函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;

方程可能有三個(gè)實(shí)數(shù)根.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

轉(zhuǎn)化為分段函數(shù),進(jìn)而分別判斷.

= ,

當(dāng)b>0時(shí),結(jié)合一元二次方程根與系數(shù)的關(guān)系,可判斷y=,在(-,0 )上是增函數(shù),y=,[0,+)上是增函數(shù),且x=0時(shí),函數(shù)圖象連續(xù),故f(x)R上是單調(diào)增函數(shù).故①正確;

當(dāng)b<0時(shí),f(x)的值域是R,沒有最小值,故錯(cuò)誤;

f(x)=|x|x+bx,f(-x)=-f(x),故函數(shù)f(x)是奇函數(shù),即函數(shù)f(x)的圖象關(guān)于(0,0)對(duì)稱.而函數(shù)f(x)=|x|x+bx+c的圖象是由函數(shù)f(x)=|x|x+bx的圖象向上平移個(gè)單位 ,故圖象一定是關(guān)于(0,c)對(duì)稱的,故正確;

b=-2,c=0,則f(x)=|x|x-2x=0,解得x=0,2,-2.所以正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),是函數(shù))圖象上的任意兩點(diǎn),且角的終邊經(jīng)過點(diǎn),若時(shí),的最小值為

1)求函數(shù)的解析式;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為 的直線l與曲線C: ,(α為參數(shù))交于A,B兩點(diǎn),且|AB|=2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則直線l的極坐標(biāo)方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程.

(1)若,是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;

(2)若,,求方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若a=1,求f(x)的極值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),如果同時(shí)滿足以下三條:對(duì)任意的,總有;;,都有成立,則稱函數(shù)為理想函數(shù).

(1) 若函數(shù)為理想函數(shù),求的值;

(2)判斷函數(shù)是否為理想函數(shù),并予以證明;

(3) 若函數(shù)為理想函數(shù),假定,使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校舉辦的集體活動(dòng)中,設(shè)計(jì)了如下有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得1分、2分、3分的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇得到相應(yīng)的分?jǐn)?shù),結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部分?jǐn)?shù)都?xì)w零,游戲結(jié)束。設(shè)選手甲第一關(guān)、第二關(guān)、第三關(guān)的概率分別為,,,選手選擇繼續(xù)闖關(guān)的概率均為,且各關(guān)之間闖關(guān)成功互不影響

(I)求選手甲第一關(guān)闖關(guān)成功且所得分?jǐn)?shù)為零的概率

(II)設(shè)該學(xué)生所得總分?jǐn)?shù)為X,X的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的右焦點(diǎn)為( ,0),離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0 , y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓C的兩條切線相互垂直,求點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案