(選做題)已知曲線C:數(shù)學(xué)公式(φ為參數(shù)).
(Ⅰ)將C的方程化為普通方程;
(Ⅱ)若點(diǎn)P(x,y)是曲線C上的動(dòng)點(diǎn),求2x+y的取值范圍.

解:(Ⅰ)由,得cosφ=,sinφ=
∵cos2φ+sin2φ=1,∴(2+(2=1
因此,將C的方程化為普通方程為
(II)∵點(diǎn)P(x,y)是曲線C:上的動(dòng)點(diǎn),(φ為參數(shù))
∴設(shè)P(4cosφ,3sinφ),可得2x+y=8cosφ+3sinφ=sin(φ+θ),
其中θ是滿足tanθ=的銳角
∵sin(φ+θ)∈[-1,1]
sin(φ+θ)∈[-]
即2x+y的取值范圍是[-,]
分析:(I)由題意,得cosφ=,sinφ=,利用同角三角函數(shù)的平方關(guān)系得(2+(2=1,化簡(jiǎn)即得曲線C的普通方程;
(II)設(shè)P(4cosφ,3sinφ),可得2x+y=8cosφ+3sinφ,再用輔助角公式合并,可得2x+y=sin(φ+θ),最后根據(jù)一個(gè)角的正弦值總在區(qū)間[-1,1],可得2x+y的取值范圍.
點(diǎn)評(píng):本題以橢圓的參數(shù)方程為例,著重考查了同角三角函數(shù)的關(guān)系,三角函數(shù)的化簡(jiǎn)與求值,以及參數(shù)方程與普通方程的互化等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•茂名二模)(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),則曲線C上的點(diǎn)到直線x+y+2=0的距離的最大值為
3
2
2
+1
3
2
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程是
x=cosα
y=1+sinα
(α為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取相同的長(zhǎng)度單位建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程是
ρ=sinθ
ρ=sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門一模)(坐標(biāo)系與參數(shù)方程選做題)已知曲線C的參數(shù)方程是
x=1+cosφ
y=sinφ
(φ為參數(shù),0≤φ<2π),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是
ρ=2cosθ
ρ=2cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)已知曲線C的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程是:
x=-
5
+
2
2
t
y=
5
+
2
2
t
(t為參數(shù)).
(Ⅰ)求曲線C的直角坐標(biāo)方程,直線l的普通方程;
(Ⅱ)將曲線C橫坐標(biāo)縮短為原來(lái)的
1
2
,再向左平移1個(gè)單位,得到曲線曲線C1,求曲線C1上的點(diǎn)到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春模擬)(選做題)已知曲線C的極坐標(biāo)方程為ρ=
4cosθ
sin2θ
,直線l參數(shù)方程為
x=tcosα
y=1+tsinα
(t為參數(shù),0≤α<π).
(1)化曲線C的極坐標(biāo)方程為直角坐標(biāo)方程;
(2)若直線l經(jīng)過(guò)點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案