若直線l:y=k(x-2)-1被圓C:x2+y2-2x-24=0截得的弦AB最短,則直線AB的方程是(  )

(A)x-y-3=0  (B)2x+y-3=0

(C)x+y-1=0  (D)2x-y-5=0

A.由直線l:y=k(x-2)-1可知直線l過點(diǎn)(2,-1);

因為圓C截得的弦AB最短,則和AB垂直的直徑必然過此點(diǎn),且由圓C:x2+y2-2x-24=0化簡得(x-1)2+y2=52,則圓心坐標(biāo)為(1,0),

設(shè)這條直徑所在直線的方程為l1:y=mx+b,

把(2,-1)和(1,0)代入求得y=-x+1,

因為直線l1和直線AB垂直,兩條直線的斜率乘積為-1,所以得-k=-1,則k=1.

所以直線AB的方程為y=x-3即x-y-3=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2007年福建省廈門市普通中學(xué)高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)(理科)試題 題型:044

如圖,已知三角形PAQ頂點(diǎn)P(-3,0),點(diǎn)Ay軸上,點(diǎn)Qx軸正半軸上,·=0,=2

(1)當(dāng)點(diǎn)Ay軸上移動時,求動點(diǎn)M的軌跡E的方程;

(2)設(shè)直線lyk(x+1)與軌跡E交于B、C兩點(diǎn),點(diǎn)D(1,0),若∠BDC為鈍角,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:044

已知橢圓E的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過點(diǎn)A(-2,0),B(2,0),C(1,)三點(diǎn).

(1)求橢圓E的方程;

(2)若點(diǎn)D為橢圓E上不同于A,B的任意一點(diǎn),F(xiàn)(-1,0),H(1,0),當(dāng)△DFH內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標(biāo);

(3)若直線l:y=k(x+4),(k≠0)與橢圓E交于M,N兩點(diǎn),點(diǎn)M關(guān)于x軸的對稱點(diǎn)為P,試問直線PN能否過定點(diǎn)F(-1,0),若是,請證明;若不是,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省長沙市雅禮中學(xué)2009屆高三第六次月考數(shù)學(xué)理試卷 題型:044

已知A(1,0),B(-2,0),動點(diǎn)M滿足∠MBA=2∠MAB(∠MAB≠0).

(1)求動點(diǎn)M的軌跡E的方程;

(2)若直線l:y=k(x+7),且軌跡E上存在不同兩點(diǎn)C.D關(guān)于直線l對稱.

①求直線l斜率k的取值范圍;

②是否可能有A、B、C、D四點(diǎn)共圓?若可能,求實(shí)數(shù)k取值的集合;若不可能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省杭州二中2009屆高三第五次月考數(shù)學(xué)試卷(文) 題型:044

已知橢圓x2+3y2=5,直線l:y=k(x+1)與橢圓相交于A,B兩點(diǎn).

(Ⅰ)若線段AB中點(diǎn)的橫坐標(biāo)是,求直線AB的方程;

(Ⅱ)在x軸上是否存在點(diǎn)M(m,0),使的值與k無關(guān)?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案