已知函數(shù)f(x)=xlnx.
(I )設(shè)g(x)=f(x)-ax,若不等式g(x)≥-1對一切x∈e (0,+∞)恒成立,求實數(shù)a 的取值范圍;
(II)設(shè)0<x1<x2,若實數(shù)x0滿足,f(x0)=
f(x2)-f(x1)
x2-x1
,證明:x1<x0<x2
(I )不等式g(x)≥-1對一切x∈(0,+∞)恒成立,等價于對一切x∈(0,+∞),g(x)max≥-1成立
設(shè)g(x)=f(x)-ax,x>0,則g′(x)=lnx+1-a
令g′(x)>0,則x>ea-1,令g′(x)<0,則0<x<ea-1
∴g(x)max=g(ea-1)=-ea-1≥-1,∴a≤1;
(II)證明:由題意f′(x)=lnx+1,則f′(x0)=lnx0+1,∴lnx0=
f(x2)-f(x1)
x2-x1
-1

lnx0-lnx2=
f(x2)-f(x1)
x2-x1
-lnx2-1
=
x2lnx2-x1lnx1
x2-x1
-lnx2-1
=
ln
x2
x1
x2
x1
-1
-1

x2
x1
=t,則lnx0-lnx2=
lnt-t+1
t-1
,t>1
令u(t)=lnt-t+1,則u′(t)=
1
t
-1
<0,∴u(t)在(1,+∞)上單調(diào)遞減
∴u(t)<u(1)=0,∴l(xiāng)nx0<lnx2,∴x0<x2;
lnx0-lnx1=
f(x2)-f(x1)
x2-x1
-lnx1-1
=
x2
x1
ln
x2
x1
x2
x1
-1
-1

x2
x1
=t,則lnx0-lnx1=
tlnt-t+1
t-1
,t>1
令v(t)=tlnt-t+1,則v′(t)=lnt>0,∴v(t)在(1,+∞)上單調(diào)遞增
∴v(t)>v(1)=0,∴l(xiāng)nx0>lnx1,∴x0>x1
由①②可得x1<x0<x2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案